\begin{tabular}{lll}
EJERCICIOS & 0 & 0 \\
0 & 0 & 0
\end{tabular}

7. [tex]$\left(2+y^2\right)^3$[/tex]

8. [tex]$(1-2 n)^3$[/tex]

9. [tex]$(4 n+3)^3$[/tex]

10. [tex]$\left(a^2-2 b\right)^3$[/tex]

11. [tex]$(2 x+3 y)^3$[/tex]

12. [tex]$\left(1-a^2\right)^3$[/tex]



Answer :

Let's go through each of the given mathematical expressions and compute the given powers.

### 7. [tex]\((2 + y^2)^3\)[/tex]
You start with the expression [tex]\((2 + y^2)\)[/tex]. To raise it to the third power, you simply cube the entire expression:
[tex]\[ (2 + y^2)^3 \][/tex]

### 10. [tex]\((a^2 - 2b)^3\)[/tex]
Here, we have [tex]\((a^2 - 2b)\)[/tex]. Raising this expression to the third power gives:
[tex]\[ (a^2 - 2b)^3 \][/tex]

### 8. [tex]\((1 - 2n)^3\)[/tex]
For this expression [tex]\((1 - 2n)\)[/tex], again you raise it to the third power:
[tex]\[ (1 - 2n)^3 \][/tex]

### 11. [tex]\((2x + 3y)^3\)[/tex]
This is the expression [tex]\((2x + 3y)\)[/tex]. Raising it to the power of three results in:
[tex]\[ (2x + 3y)^3 \][/tex]

### 9. [tex]\((4n + 3)^3\)[/tex]
For [tex]\((4n + 3)\)[/tex], raising it to the third power gives:
[tex]\[ (4n + 3)^3 \][/tex]

### 12. [tex]\((1 - a^2)^3\)[/tex]
And finally, we have the expression [tex]\((1 - a^2)\)[/tex]. Raising it to the third power, you get:
[tex]\[ (1 - a^2)^3 \][/tex]

Putting it all together, the computed results for each of the given tasks are as follows:

[tex]\[ (2 + y^2)^3 \][/tex]

[tex]\[ (a^2 - 2b)^3 \][/tex]

[tex]\[ (1 - 2n)^3 \][/tex]

[tex]\[ (2x + 3y)^3 \][/tex]

[tex]\[ (4n + 3)^3 \][/tex]

[tex]\[ (1 - a^2)^3 \][/tex]

These solutions align with the original questions given.