The table represents a linear function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 8 \\
\hline
-1 & 2 \\
\hline
0 & -4 \\
\hline
1 & -10 \\
\hline
2 & -16 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$-6$[/tex]
B. 4
C. 4
D. 6



Answer :

Sure, let's go through the calculation step-by-step to find the slope of the linear function represented by the table.

The table provided is:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 8 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 1 & -10 \\ \hline 2 & -16 \\ \hline \end{tabular} \][/tex]

### Step-by-Step Calculation:

1. Identify Two Points: We will use the first two points from the table to calculate the slope. Let's choose ([tex]\(x_1, y_1\)[/tex]) = (-2, 8) and ([tex]\(x_2, y_2\)[/tex]) = (-1, 2).

2. Calculate the Differences:
[tex]\[ \Delta y = y_2 - y_1 = 2 - 8 = -6 \][/tex]
[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]

3. Calculate the Slope [tex]\(m\)[/tex]:
The slope [tex]\(m\)[/tex] is given by the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-6}{1} = -6 \][/tex]

The slope of the linear function represented by the table is [tex]\(-6\)[/tex]. Therefore, the correct answer is:

[tex]\[ \boxed{-6} \][/tex]