What is the [tex]$y$[/tex]-intercept of the function [tex]$f(x) = -\frac{2}{9}x + \frac{1}{3}$[/tex]?

A. [tex]$-\frac{2}{9}$[/tex]
B. [tex]$-\frac{1}{3}$[/tex]
C. [tex]$\frac{1}{3}$[/tex]
D. [tex]$\frac{2}{9}$[/tex]



Answer :

To find the y-intercept of the function [tex]\( f(x) = -\frac{2}{9}x + \frac{1}{3} \)[/tex], we need to determine the value of the function when [tex]\( x = 0 \)[/tex].

The y-intercept occurs where the graph of the function crosses the y-axis. This happens when [tex]\( x = 0 \)[/tex].

Let's substitute [tex]\( x = 0 \)[/tex] into the function:

[tex]\[ f(0) = -\frac{2}{9}(0) + \frac{1}{3} \][/tex]

Simplifying this:

[tex]\[ f(0) = 0 + \frac{1}{3} \][/tex]
[tex]\[ f(0) = \frac{1}{3} \][/tex]

Therefore, the y-intercept of the function [tex]\( f(x) = -\frac{2}{9} x + \frac{1}{3} \)[/tex] is [tex]\(\frac{1}{3}\)[/tex].

So, the correct answer is [tex]\(\frac{1}{3}\)[/tex].