Complete the equation describing how [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are related.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
$x$ & $y$ & $y$ are related. \\
\hline
0 & -1 & \\
\hline
1 & 3 & $y = [?] x + $ \\
\hline
2 & 7 & \\
\hline
3 & 11 & \\
\hline
4 & 15 & \\
\hline
5 & 19 & \\
\hline
\end{tabular}
\][/tex]

Note: Replace [tex]\([?]\)[/tex] with the correct coefficient in the equation [tex]\(y = mx + b\)[/tex].



Answer :

To find the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we are looking for a linear equation of the form:

[tex]\[ y = mx + b \][/tex]

1. First, we identify two points from the given data: (0, -1) and (1, 3).

2. We calculate the slope [tex]\( m \)[/tex] using these two points. The slope [tex]\( m \)[/tex] is given by:

[tex]\[ m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]

For the points (0, -1) and (1, 3):
[tex]\[ x_1 = 0, \, y_1 = -1 \][/tex]
[tex]\[ x_2 = 1, \, y_2 = 3 \][/tex]

So,
[tex]\[ m = \frac{3 - (-1)}{1 - 0} = \frac{3 + 1}{1 - 0} = \frac{4}{1} = 4 \][/tex]

3. Next, we calculate the y-intercept [tex]\( b \)[/tex]. We can use the slope-intercept form of the line equation [tex]\( y = mx + b \)[/tex] and one of the given points to find [tex]\( b \)[/tex]. Using the point (0, -1):

[tex]\[ y_1 = mx_1 + b \][/tex]
[tex]\[ -1 = 4 \cdot 0 + b \][/tex]

Therefore,
[tex]\[ b = -1 \][/tex]

4. Combining the slope and y-intercept we found:

[tex]\[ y = 4x - 1 \][/tex]

Thus, the linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:

[tex]\[ y = 4x - 1 \][/tex]