Answered

Use Coulomb's Law to calculate the force between [tex]q_1[/tex] and [tex]q_3[/tex].

[tex]\[
\vec{F}_3 = k_e \frac{\left| q_1 q_3 \right|}{r^2}
\][/tex]

Given:
[tex]\[
k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2, \quad r = 0.55 \, \text{m}
\][/tex]

Find:
[tex]\[
\overrightarrow{F_3} = [?] \, \text{N}
\][/tex]



Answer :

Certainly! Let's solve the problem step-by-step using Coulomb's Law:

Coulomb's Law provides the magnitude of the electrostatic force [tex]\( F \)[/tex] between two point charges. The formula is given by:
[tex]\[ F = k_e \frac{|q_1 q_3|}{r^2} \][/tex]
where:
- [tex]\( k_e \)[/tex] is Coulomb's constant, which has the value [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
- [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are the magnitudes of the point charges.
- [tex]\( r \)[/tex] is the distance between the two charges.

Here are the given values:
- [tex]\( k_e = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]
- [tex]\( q_1 = 1 \, \text{C} \)[/tex] (Coulombs)
- [tex]\( q_3 = 1 \, \text{C} \)[/tex] (Coulombs)
- [tex]\( r = 0.55 \, \text{m} \)[/tex] (meters)

Using these values in Coulomb's Law formula, we get:
[tex]\[ F = 8.99 \times 10^9 \frac{|1 \cdot 1|}{0.55^2} \][/tex]

First, calculate the square of the distance [tex]\( r \)[/tex]:
[tex]\[ r^2 = (0.55)^2 = 0.3025 \, \text{m}^2 \][/tex]

Next, substitute this value along with the charges and Coulomb's constant into the formula:
[tex]\[ F = 8.99 \times 10^9 \frac{1}{0.3025} \][/tex]

Now, compute the division inside the formula:
[tex]\[ \frac{1}{0.3025} \approx 3.3058 \][/tex]

Then, multiply this result by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 3.3058 \approx 29719008264.462807 \, \text{N} \][/tex]

Thus, the electrostatic force [tex]\( \vec{F}_3 \)[/tex] between the charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] is approximately:
[tex]\[ \boxed{29719008264.462807 \, \text{N}} \][/tex]