Remmi wrote the equation of the line [tex]$y=\frac{1}{3}(x+2)$[/tex]. He solved for [tex]$x$[/tex] and got [tex][tex]$x=3y-2$[/tex][/tex]. Which of the following is an equivalent equation for [tex]$x$[/tex]?

A. [tex]$x=y-\frac{11}{3}$[/tex]
B. [tex][tex]$x=y+\frac{7}{3}$[/tex][/tex]
C. [tex]$x=3\left(y-\frac{2}{3}\right)$[/tex]
D. [tex]$x=3\left(y+\frac{2}{3}\right)$[/tex]



Answer :

To solve for [tex]\( x \)[/tex] from the given equation [tex]\( y = \frac{1}{3}(x + 2) \)[/tex], we'll perform a series of algebraic steps. Let's go through it step by step:

1. Start with the given equation:
[tex]\[ y = \frac{1}{3}(x + 2) \][/tex]

2. To eliminate the fraction, multiply both sides by 3:
[tex]\[ 3y = x + 2 \][/tex]

3. Next, isolate [tex]\( x \)[/tex] by subtracting 2 from both sides:
[tex]\[ x = 3y - 2 \][/tex]

Now that we have [tex]\( x = 3y - 2 \)[/tex], let's compare it with the given options to find the equivalent equation:

1. Option 1: [tex]\( x = y - \frac{11}{3} \)[/tex]
[tex]\[ x = y - \frac{11}{3} \][/tex]
This does not match our equation.

2. Option 2: [tex]\( x = y + \frac{7}{3} \)[/tex]
[tex]\[ x = y + \frac{7}{3} \][/tex]
This does not match our equation.

3. Option 3: [tex]\( x = 3\left(y - \frac{2}{3}\right) \)[/tex]
[tex]\[ x = 3 \left( y - \frac{2}{3} \right) \][/tex]
Simplifying the right-hand side:
[tex]\[ x = 3y - 2 \][/tex]
This matches our derived equation [tex]\( x = 3y - 2 \)[/tex].

4. Option 4: [tex]\( x = 3\left(y + \frac{2}{3}\right) \)[/tex]
[tex]\[ x = 3 \left( y + \frac{2}{3} \right) \][/tex]
Simplifying the right-hand side:
[tex]\[ x = 3y + 2 \][/tex]
This does not match our equation.

Therefore, the equivalent equation for [tex]\( x \)[/tex] is:

[tex]\[ x = 3\left(y - \frac{2}{3}\right) \][/tex]

Thus, the correct option is [tex]\( \boxed{3} \)[/tex].