Answered

Alaya Lawanda - 1473192

A farmer has a rectangular field that measures 100 feet by 150 feet. He plans to increase the area of the field by [tex]20 \%[/tex]. He will do this by increasing the length and width by the same amount, [tex]x[/tex]. Which equation represents the area of the new field?

Select two answers.

a. [tex](100+2x)(150+2x)=18000[/tex]

b. [tex]2(100+2x)+2(150+x)=15000[/tex]

c. [tex](100+x)(150+x)=18000[/tex]

d. [tex](100+x)(150+x)=15000[/tex]

e. [tex](x+100)(x+150)=1.2 \times 15000[/tex]



Answer :

To solve the problem, let's carefully break it down step by step.

1. Initial Area of the Field:
The farmer’s initial rectangular field measures 100 feet by 150 feet. Therefore, the initial area [tex]\( A_{\text{initial}} \)[/tex] is:
[tex]\[ A_{\text{initial}} = 100 \text{ ft} \times 150 \text{ ft} = 15000 \text{ ft}^2 \][/tex]

2. Increased Area:
The farmer wants to increase the area by [tex]\( 20\% \)[/tex]. Therefore, the new area [tex]\( A_{\text{new}} \)[/tex] is:
[tex]\[ A_{\text{new}} = A_{\text{initial}} \times 1.20 = 15000 \text{ ft}^2 \times 1.20 = 18000 \text{ ft}^2 \][/tex]

3. New Dimensions:
The farmer will increase both the length and the width by the same amount [tex]\( x \)[/tex]. Therefore, the new length will be [tex]\( 100 + x \)[/tex] and the new width will be [tex]\( 150 + x \)[/tex].

4. Equation for the New Area:
The equation representing the new area in terms of [tex]\( x \)[/tex] will be:
[tex]\[ (\text{new length}) \times (\text{new width}) = A_{\text{new}} \][/tex]
Substituting the new dimensions and the new area:
[tex]\[ (100 + x)(150 + x) = 18000 \][/tex]

This equation needs to be among the answer choices. Let's match it with the given options:

a. [tex]\((100+2x)(150+2x)=18000\)[/tex] - This is incorrect because it has [tex]\(2x\)[/tex] added to each dimension instead of [tex]\(x\)[/tex].

b. [tex]\(2(100+2x)+2(150+x)=15000\)[/tex] - This is incorrect because it represents a perimeter-like formula, not an area.

c. [tex]\((100+x)(150+x)=18000\)[/tex] - This represents our derived equation correctly.

d. [tex]\((100+x)(150+x)=15000\)[/tex] - This is incorrect because the right-hand side should be 18000, as per the need to increase the area by [tex]\(20\%\)[/tex].

e. [tex]\((x+100)(x+150)=(1.2) 15000\)[/tex] - Simplifying the right-hand side:
[tex]\[ 1.2 \times 15000 = 18000 \][/tex]
Therefore, this equation also correctly gives us the increased area.

From the options, the correct equations are:

- [tex]\( (100 + x)(150 + x) = 18000 \)[/tex] (option c)
- [tex]\( (x + 100)(x + 150) = (1.2) 15000 \)[/tex], which simplifies to [tex]\( (x + 100)(x + 150) = 18000 \)[/tex] (option e).

Thus, the correct selections are:
- c. [tex]\((100+x)(150+x)=18000\)[/tex]
- e. [tex]\((x+100)(x+150)=(1.2) 15000\)[/tex]