What is the value of [tex]\sin^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)[/tex]?

A. [tex]\frac{2 \pi}{3}[/tex]
B. [tex]\frac{-2 \pi}{3}[/tex]
C. [tex]\frac{-\pi}{6}[/tex]
D. [tex]\frac{\pi}{6}[/tex]



Answer :

To solve [tex]\(\sin^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)\)[/tex], we need to approach the problem step-by-step.

### Step 1: Calculate [tex]\(\cos \left(\frac{2 \pi}{3}\right)\)[/tex]

The angle [tex]\(\frac{2 \pi}{3}\)[/tex] radians is in the second quadrant. In the second quadrant:
[tex]\[ \cos \left(\frac{2 \pi}{3}\right) = -\cos \left(\pi - \frac{2 \pi}{3}\right) \][/tex]
[tex]\[ \cos \left(\pi - \frac{2 \pi}{3}\right) = \cos \left(\frac{\pi}{3}\right) \][/tex]

We know that:
[tex]\[ \cos \left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]

So:
[tex]\[ \cos \left(\frac{2 \pi}{3}\right) = -\frac{1}{2} \][/tex]

Therefore:
[tex]\[ \cos \left(\frac{2 \pi}{3}\right) = -0.4999999999999998 \][/tex]

### Step 2: Find [tex]\(\sin^{-1}(-0.5)\)[/tex]

Now, we need to calculate the inverse sine (arcsine) of [tex]\(-0.5\)[/tex]. The inverse sine function, [tex]\(\sin^{-1}(x)\)[/tex], returns values in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].

We need to find an angle [tex]\(\theta\)[/tex] such that:
[tex]\[ \sin(\theta) = -0.5 \][/tex]
that also lies in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].

We know that:
[tex]\[ \sin \left(- \frac{\pi}{6}\right) = -\frac{1}{2} \][/tex]

So:
[tex]\[ \sin^{-1}\left(-\frac{1}{2}\right) = - \frac{\pi}{6} \][/tex]

Therefore:
[tex]\[ \sin^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right) = - \frac{\pi}{6} = -0.5235987755982986 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{-\pi}{6}} \][/tex]