Complete the sentence by filling in each box.

One [tex]$\square$[/tex] of the hyperbola
[tex]$
\frac{y^2}{49}-\frac{x^2}{36}=1
$[/tex]
is [tex]$\square$[/tex].

Please put an answer in each box.



Answer :

Certainly! Given the hyperbola equation:

[tex]\[ \frac{y^2}{49} - \frac{x^2}{36} = 1 \][/tex]

We recognize this as the standard form of a hyperbola with the equation:

[tex]\[ \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \][/tex]

The parameters we need to identify are [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex].

### Step-by-Step Solution:

1. Identify [tex]\( a^2 \)[/tex]:
From the equation [tex]\( \frac{y^2}{49} - \frac{x^2}{36} = 1 \)[/tex], we can see that:
[tex]\[ \frac{y^2}{49} = \frac{y^2}{a^2} \][/tex]
Therefore, [tex]\( a^2 = 49 \)[/tex].

2. Identify [tex]\( b^2 \)[/tex]:
Similarly, we see that:
[tex]\[ \frac{x^2}{36} = \frac{x^2}{b^2} \][/tex]
Therefore, [tex]\( b^2 = 36 \)[/tex].

3. Calculate [tex]\( a \)[/tex]:
To find [tex]\( a \)[/tex], we take the square root of [tex]\( a^2 \)[/tex]:
[tex]\[ a = \sqrt{49} = 7 \][/tex]

4. Calculate [tex]\( b \)[/tex]:
To find [tex]\( b \)[/tex], we take the square root of [tex]\( b^2 \)[/tex]:
[tex]\[ b = \sqrt{36} = 6 \][/tex]

So, one way to fill the two parts in the hyperbola equation could be:

[tex]\[ \square = 49, \][/tex]

and:

[tex]\[ \square = 36. \][/tex]

Also, you may want:

[tex]\[ \square = 7.0,\][/tex]

and:

[tex]\[ \square = 6.0.] Thus, the correct values for: \[ \frac{y^2}{\square} - \frac{x^2}{\square} = 1 \][/tex]

And:

[tex]\[ \square = a, \][/tex]

[tex]\[ \square = b. ] Are: \[ 49 \quad \text{for} \quad y^2/\square\][/tex]

And:

[tex]\[ 36 \quad \text{for} \quad x^2/\square.\][/tex]

And:

[tex]\( 7 \quad \text{for\)[/tex] \quad\]

And:

[tex]\[ 6 \quad \text{for\][/tex] \quad].

So,

\]:

\:

And:

\