Complete the table using the rule:

[tex]\[ 2x - y = 4 \][/tex]

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 25 & 34 \\
\hline
[tex]$y$[/tex] & & & & & \\
\hline
\end{tabular}



Answer :

To complete the table using the rule [tex]\(2x - y = 4\)[/tex], we need to solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].

First, let's isolate [tex]\(y\)[/tex] in the given equation:
[tex]\[ 2x - y = 4 \][/tex]
Adding [tex]\(y\)[/tex] to both sides gives:
[tex]\[ 2x = y + 4 \][/tex]
Subtracting 4 from both sides, we get:
[tex]\[ y = 2x - 4 \][/tex]

Now we will use this equation to find the value of [tex]\(y\)[/tex] for each given [tex]\(x\)[/tex].

1. For [tex]\(x = 3\)[/tex]:
[tex]\[ y = 2(3) - 4 = 6 - 4 = 2 \][/tex]

2. For [tex]\(x = 4\)[/tex]:
[tex]\[ y = 2(4) - 4 = 8 - 4 = 4 \][/tex]

3. For [tex]\(x = 5\)[/tex]:
[tex]\[ y = 2(5) - 4 = 10 - 4 = 6 \][/tex]

4. For [tex]\(x = 25\)[/tex]:
[tex]\[ y = 2(25) - 4 = 50 - 4 = 46 \][/tex]

5. For [tex]\(x = 34\)[/tex]:
[tex]\[ y = 2(34) - 4 = 68 - 4 = 64 \][/tex]

Having calculated these values, we can now complete the table:
[tex]\[ \begin{tabular}{|l|l|l|l|l|l|} \hline x & 3 & 4 & 5 & 25 & 34 \\ \hline y & 2 & 4 & 6 & 46 & 64 \\ \hline \end{tabular} \][/tex]