Name: Previok Yen G. Heman
Section: Fall
Subject: _______________

1. Solve for [tex]\(x\)[/tex]:
[tex]\[ 120 + x = 36 \][/tex]

2. Simplify:
[tex]\[ 4 = 2100 \quad x = 360 \][/tex]

3. Determine if the equation is correct:
[tex]\[ 180^{\circ} = 360^{\circ} \][/tex]

4. Solve for [tex]\(x\)[/tex]:
[tex]\[ 135 + 60 + 50 + x = 3 \][/tex]



Answer :

To solve the given equations step-by-step, we need to isolate the variable [tex]\( x \)[/tex] in each equation.

### Equation 1

First, consider the equation:

[tex]\[ 120 + x = 36 \][/tex]

To isolate [tex]\( x \)[/tex], we need to subtract 120 from both sides of the equation. This gives:

[tex]\[ x = 36 - 120 \][/tex]

When we perform the subtraction:

[tex]\[ x = -84 \][/tex]

So, the solution for [tex]\( x \)[/tex] in the first equation is:

[tex]\[ x = -84 \][/tex]

### Equation 2

Next, consider the equation:

[tex]\[ 135 + 60 + 50 + x = 360 \][/tex]

First, let's add the constants on the left-hand side together. The sum of these numbers is:

[tex]\[ 135 + 60 + 50 = 245 \][/tex]

Now, our equation looks like this:

[tex]\[ 245 + x = 360 \][/tex]

To isolate [tex]\( x \)[/tex], we need to subtract 245 from both sides of the equation. This gives:

[tex]\[ x = 360 - 245 \][/tex]

When we perform the subtraction:

[tex]\[ x = 115 \][/tex]

So, the solution for [tex]\( x \)[/tex] in the second equation is:

[tex]\[ x = 115 \][/tex]

### Conclusion

The solutions to the given equations are:

- For the equation [tex]\( 120 + x = 36 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( -84 \)[/tex].
- For the equation [tex]\( 135 + 60 + 50 + x = 360 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( 115 \)[/tex].

In summary:

[tex]\[ x = -84 \quad \text{for the first equation} \][/tex]
[tex]\[ x = 115 \quad \text{for the second equation} \][/tex]