Answer :
To solve the given equations step-by-step, we need to isolate the variable [tex]\( x \)[/tex] in each equation.
### Equation 1
First, consider the equation:
[tex]\[ 120 + x = 36 \][/tex]
To isolate [tex]\( x \)[/tex], we need to subtract 120 from both sides of the equation. This gives:
[tex]\[ x = 36 - 120 \][/tex]
When we perform the subtraction:
[tex]\[ x = -84 \][/tex]
So, the solution for [tex]\( x \)[/tex] in the first equation is:
[tex]\[ x = -84 \][/tex]
### Equation 2
Next, consider the equation:
[tex]\[ 135 + 60 + 50 + x = 360 \][/tex]
First, let's add the constants on the left-hand side together. The sum of these numbers is:
[tex]\[ 135 + 60 + 50 = 245 \][/tex]
Now, our equation looks like this:
[tex]\[ 245 + x = 360 \][/tex]
To isolate [tex]\( x \)[/tex], we need to subtract 245 from both sides of the equation. This gives:
[tex]\[ x = 360 - 245 \][/tex]
When we perform the subtraction:
[tex]\[ x = 115 \][/tex]
So, the solution for [tex]\( x \)[/tex] in the second equation is:
[tex]\[ x = 115 \][/tex]
### Conclusion
The solutions to the given equations are:
- For the equation [tex]\( 120 + x = 36 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( -84 \)[/tex].
- For the equation [tex]\( 135 + 60 + 50 + x = 360 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( 115 \)[/tex].
In summary:
[tex]\[ x = -84 \quad \text{for the first equation} \][/tex]
[tex]\[ x = 115 \quad \text{for the second equation} \][/tex]
### Equation 1
First, consider the equation:
[tex]\[ 120 + x = 36 \][/tex]
To isolate [tex]\( x \)[/tex], we need to subtract 120 from both sides of the equation. This gives:
[tex]\[ x = 36 - 120 \][/tex]
When we perform the subtraction:
[tex]\[ x = -84 \][/tex]
So, the solution for [tex]\( x \)[/tex] in the first equation is:
[tex]\[ x = -84 \][/tex]
### Equation 2
Next, consider the equation:
[tex]\[ 135 + 60 + 50 + x = 360 \][/tex]
First, let's add the constants on the left-hand side together. The sum of these numbers is:
[tex]\[ 135 + 60 + 50 = 245 \][/tex]
Now, our equation looks like this:
[tex]\[ 245 + x = 360 \][/tex]
To isolate [tex]\( x \)[/tex], we need to subtract 245 from both sides of the equation. This gives:
[tex]\[ x = 360 - 245 \][/tex]
When we perform the subtraction:
[tex]\[ x = 115 \][/tex]
So, the solution for [tex]\( x \)[/tex] in the second equation is:
[tex]\[ x = 115 \][/tex]
### Conclusion
The solutions to the given equations are:
- For the equation [tex]\( 120 + x = 36 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( -84 \)[/tex].
- For the equation [tex]\( 135 + 60 + 50 + x = 360 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( 115 \)[/tex].
In summary:
[tex]\[ x = -84 \quad \text{for the first equation} \][/tex]
[tex]\[ x = 115 \quad \text{for the second equation} \][/tex]