A milk tanker contains 100 liters of milk. If [tex]$65 \frac{2}{3}$[/tex] liters of milk are used, how much milk is left in the tanker?



Answer :

To determine how much milk is left in the tanker, let's dive into the problem step-by-step.

1. Initial Amount of Milk:
The milk tanker initially contains 100 liters of milk.

2. Milk Used:
Of the 100 liters, [tex]\( 65 \frac{2}{3} \)[/tex] liters of milk have been used.

To simplify our work, we convert the mixed number [tex]\( 65 \frac{2}{3} \)[/tex] into an improper fraction. However, doing so directly into decimal form leads us to understand that:
[tex]\( 65 \frac{2}{3} \)[/tex] liters = [tex]\( 65 + \frac{2}{3} \)[/tex] liters.

3. Convert Fraction to Decimal:
[tex]\( \frac{2}{3} \)[/tex] as a decimal is approximately 0.66666666666667.

So, [tex]\( 65 \frac{2}{3} \)[/tex] liters = 65 + 0.66666666666667 = 65.66666666666667 liters.

4. Calculate Remaining Milk:
Now, subtract the amount of milk used from the initial amount.

[tex]\[ \text{Milk left} = \text{Initial milk} - \text{Milk used} \][/tex]

[tex]\[ \text{Milk left} = 100 - 65.66666666666667 = 34.33333333333333 \][/tex]

Hence, the amounts we found are:
- Milk used: [tex]\( 65 \frac{2}{3} \, \text{liters} \approx 65.66666666666667 \, \text{liters} \)[/tex]
- Milk left in the tanker: [tex]\( 34.33333333333333 \, \text{liters} \)[/tex]

Therefore, after using [tex]\(65 \frac{2}{3}\)[/tex] liters of milk, the remaining amount of milk in the tanker is approximately 34.333 liters.