What is the domain of the given function?

[tex]\[ \{(3, -2), (6, 1), (-1, 4), (5, 9), (-4, 0)\} \][/tex]

A. [tex]\(\{x \mid x = -4, -1, 3, 5, 6\}\)[/tex]

B. [tex]\(\{y \mid y = -2, 0, 1, 4, 9\}\)[/tex]

C. [tex]\(\{x \mid x = -4, -2, -1, 0, 1, 3, 4, 5, 6, 9\}\)[/tex]

D. [tex]\(\{y \mid y = -4, -2, -1, 0, 1, 3, 4, 5, 6, 9\}\)[/tex]



Answer :

To determine the domain of the given function [tex]\(\{(3,-2), (6,1), (-1,4), (5,9), (-4,0)\}\)[/tex], we need to identify all the possible [tex]\(x\)[/tex]-values in the ordered pairs, which are the inputs of the function.

Here are the steps:

1. List the x-coordinates: Extract the [tex]\(x\)[/tex]-values from each ordered pair.
[tex]\[ (3,-2) \rightarrow x=3, \quad (6,1) \rightarrow x=6, \quad (-1,4) \rightarrow x=-1, \quad (5,9) \rightarrow x=5, \quad (-4,0) \rightarrow x=-4 \][/tex]

2. Form the set of x-coordinates: Combine all the [tex]\(x\)[/tex]-values into a set.
[tex]\[ \{3, 6, -1, 5, -4\} \][/tex]

3. Sort the x-coordinates: Arrange the elements of the set in ascending order for clarity.
[tex]\[ \{-4, -1, 3, 5, 6\} \][/tex]

4. Identify the correct choice: Compare our sorted set of [tex]\(x\)[/tex]-values with the provided multiple choice options to determine the correct domain.
[tex]\[ \{x \mid x=-4,-1,3,5,6\} \][/tex]

Given these steps, the domain of the function [tex]\(\{(3,-2), (6,1), (-1,4), (5,9), (-4,0)\}\)[/tex] is:
[tex]\[ \{x \mid x=-4,-1,3,5,6\} \][/tex]

Therefore, the correct choice is:
[tex]\[ \{x \mid x=-4,-1,3,5,6\} \][/tex]

This corresponds to the first multiple choice option:
[tex]\[ 1 \][/tex]