Write each as a percent. Use repeating decimals when necessary.

27) [tex]\frac{1}{2}[/tex]

28) [tex]\frac{1}{8}[/tex]

29) [tex]\frac{2}{3}[/tex]

30) [tex]\frac{1}{100}[/tex]

31) [tex]2 \frac{1}{10}[/tex]

32) [tex]\frac{3}{8}[/tex]

33) [tex]\frac{1}{10}[/tex]

34) [tex]\frac{87}{100}[/tex]



Answer :

Let's convert each fraction to a percent step-by-step. Remember, to convert a fraction to a percent, you divide the numerator (the top number) by the denominator (the bottom number) and then multiply by 100%.

---

27) [tex]\(\frac{1}{2}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{1}{2} = 0.5 \)[/tex]
2. Multiply by 100: [tex]\( 0.5 \times 100 = 50 \)[/tex]

So, [tex]\(\frac{1}{2} = 50\%\)[/tex].

---

28) [tex]\(\frac{1}{8}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{1}{8} = 0.125 \)[/tex]
2. Multiply by 100: [tex]\( 0.125 \times 100 = 12.5 \)[/tex]

So, [tex]\(\frac{1}{8} = 12.5\%\)[/tex].

---

29) [tex]\(\frac{2}{3}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{2}{3} \approx 0.66666666666666\)[/tex] (repeating decimal)
2. Multiply by 100: [tex]\( 0.66666666666666 \times 100 = 66.66666666666666 \)[/tex]

So, [tex]\(\frac{2}{3} \approx 66.66666666666666\%\)[/tex].

---

30) [tex]\(\frac{1}{100}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{1}{100} = 0.01 \)[/tex]
2. Multiply by 100: [tex]\( 0.01 \times 100 = 1 \)[/tex]

So, [tex]\(\frac{1}{100} = 1\%\)[/tex].

---

31) [tex]\(2 \frac{1}{10}\)[/tex]

First, convert the mixed number to an improper fraction: [tex]\(2 \frac{1}{10} = \frac{21}{10}\)[/tex].

1. Divide the numerator by the denominator: [tex]\( \frac{21}{10} = 2.1 \)[/tex]
2. Multiply by 100: [tex]\( 2.1 \times 100 = 210 \)[/tex]

So, [tex]\(2 \frac{1}{10} = 210\%\)[/tex].

---

32) [tex]\(\frac{3}{8}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{3}{8} = 0.375 \)[/tex]
2. Multiply by 100: [tex]\( 0.375 \times 100 = 37.5 \)[/tex]

So, [tex]\(\frac{3}{8} = 37.5\%\)[/tex].

---

33) [tex]\(\frac{1}{10}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{1}{10} = 0.1 \)[/tex]
2. Multiply by 100: [tex]\( 0.1 \times 100 = 10 \)[/tex]

So, [tex]\(\frac{1}{10} = 10\%\)[/tex].

---

34) [tex]\(\frac{87}{100}\)[/tex]

1. Divide the numerator by the denominator: [tex]\( \frac{87}{100} = 0.87 \)[/tex]
2. Multiply by 100: [tex]\( 0.87 \times 100 = 87 \)[/tex]

So, [tex]\(\frac{87}{100} = 87\%\)[/tex].

---

In conclusion, when you convert the given fractions to percentages, you get:

27) [tex]\( \frac{1}{2} = 50\% \)[/tex]

28) [tex]\( \frac{1}{8} = 12.5\% \)[/tex]

29) [tex]\( \frac{2}{3} \approx 66.66666666666666\%\)[/tex]

30) [tex]\( \frac{1}{100} = 1\% \)[/tex]

31) [tex]\( 2 \frac{1}{10} = 210\% \)[/tex]

32) [tex]\( \frac{3}{8} = 37.5\% \)[/tex]

33) [tex]\( \frac{1}{10} = 10\% \)[/tex]

34) [tex]\( \frac{87}{100} = 87\% \)[/tex]