Answer :
Let's convert each fraction to a percent step-by-step. Remember, to convert a fraction to a percent, you divide the numerator (the top number) by the denominator (the bottom number) and then multiply by 100%.
---
27) [tex]\(\frac{1}{2}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{2} = 0.5 \)[/tex]
2. Multiply by 100: [tex]\( 0.5 \times 100 = 50 \)[/tex]
So, [tex]\(\frac{1}{2} = 50\%\)[/tex].
---
28) [tex]\(\frac{1}{8}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{8} = 0.125 \)[/tex]
2. Multiply by 100: [tex]\( 0.125 \times 100 = 12.5 \)[/tex]
So, [tex]\(\frac{1}{8} = 12.5\%\)[/tex].
---
29) [tex]\(\frac{2}{3}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{2}{3} \approx 0.66666666666666\)[/tex] (repeating decimal)
2. Multiply by 100: [tex]\( 0.66666666666666 \times 100 = 66.66666666666666 \)[/tex]
So, [tex]\(\frac{2}{3} \approx 66.66666666666666\%\)[/tex].
---
30) [tex]\(\frac{1}{100}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{100} = 0.01 \)[/tex]
2. Multiply by 100: [tex]\( 0.01 \times 100 = 1 \)[/tex]
So, [tex]\(\frac{1}{100} = 1\%\)[/tex].
---
31) [tex]\(2 \frac{1}{10}\)[/tex]
First, convert the mixed number to an improper fraction: [tex]\(2 \frac{1}{10} = \frac{21}{10}\)[/tex].
1. Divide the numerator by the denominator: [tex]\( \frac{21}{10} = 2.1 \)[/tex]
2. Multiply by 100: [tex]\( 2.1 \times 100 = 210 \)[/tex]
So, [tex]\(2 \frac{1}{10} = 210\%\)[/tex].
---
32) [tex]\(\frac{3}{8}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{3}{8} = 0.375 \)[/tex]
2. Multiply by 100: [tex]\( 0.375 \times 100 = 37.5 \)[/tex]
So, [tex]\(\frac{3}{8} = 37.5\%\)[/tex].
---
33) [tex]\(\frac{1}{10}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{10} = 0.1 \)[/tex]
2. Multiply by 100: [tex]\( 0.1 \times 100 = 10 \)[/tex]
So, [tex]\(\frac{1}{10} = 10\%\)[/tex].
---
34) [tex]\(\frac{87}{100}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{87}{100} = 0.87 \)[/tex]
2. Multiply by 100: [tex]\( 0.87 \times 100 = 87 \)[/tex]
So, [tex]\(\frac{87}{100} = 87\%\)[/tex].
---
In conclusion, when you convert the given fractions to percentages, you get:
27) [tex]\( \frac{1}{2} = 50\% \)[/tex]
28) [tex]\( \frac{1}{8} = 12.5\% \)[/tex]
29) [tex]\( \frac{2}{3} \approx 66.66666666666666\%\)[/tex]
30) [tex]\( \frac{1}{100} = 1\% \)[/tex]
31) [tex]\( 2 \frac{1}{10} = 210\% \)[/tex]
32) [tex]\( \frac{3}{8} = 37.5\% \)[/tex]
33) [tex]\( \frac{1}{10} = 10\% \)[/tex]
34) [tex]\( \frac{87}{100} = 87\% \)[/tex]
---
27) [tex]\(\frac{1}{2}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{2} = 0.5 \)[/tex]
2. Multiply by 100: [tex]\( 0.5 \times 100 = 50 \)[/tex]
So, [tex]\(\frac{1}{2} = 50\%\)[/tex].
---
28) [tex]\(\frac{1}{8}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{8} = 0.125 \)[/tex]
2. Multiply by 100: [tex]\( 0.125 \times 100 = 12.5 \)[/tex]
So, [tex]\(\frac{1}{8} = 12.5\%\)[/tex].
---
29) [tex]\(\frac{2}{3}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{2}{3} \approx 0.66666666666666\)[/tex] (repeating decimal)
2. Multiply by 100: [tex]\( 0.66666666666666 \times 100 = 66.66666666666666 \)[/tex]
So, [tex]\(\frac{2}{3} \approx 66.66666666666666\%\)[/tex].
---
30) [tex]\(\frac{1}{100}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{100} = 0.01 \)[/tex]
2. Multiply by 100: [tex]\( 0.01 \times 100 = 1 \)[/tex]
So, [tex]\(\frac{1}{100} = 1\%\)[/tex].
---
31) [tex]\(2 \frac{1}{10}\)[/tex]
First, convert the mixed number to an improper fraction: [tex]\(2 \frac{1}{10} = \frac{21}{10}\)[/tex].
1. Divide the numerator by the denominator: [tex]\( \frac{21}{10} = 2.1 \)[/tex]
2. Multiply by 100: [tex]\( 2.1 \times 100 = 210 \)[/tex]
So, [tex]\(2 \frac{1}{10} = 210\%\)[/tex].
---
32) [tex]\(\frac{3}{8}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{3}{8} = 0.375 \)[/tex]
2. Multiply by 100: [tex]\( 0.375 \times 100 = 37.5 \)[/tex]
So, [tex]\(\frac{3}{8} = 37.5\%\)[/tex].
---
33) [tex]\(\frac{1}{10}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{1}{10} = 0.1 \)[/tex]
2. Multiply by 100: [tex]\( 0.1 \times 100 = 10 \)[/tex]
So, [tex]\(\frac{1}{10} = 10\%\)[/tex].
---
34) [tex]\(\frac{87}{100}\)[/tex]
1. Divide the numerator by the denominator: [tex]\( \frac{87}{100} = 0.87 \)[/tex]
2. Multiply by 100: [tex]\( 0.87 \times 100 = 87 \)[/tex]
So, [tex]\(\frac{87}{100} = 87\%\)[/tex].
---
In conclusion, when you convert the given fractions to percentages, you get:
27) [tex]\( \frac{1}{2} = 50\% \)[/tex]
28) [tex]\( \frac{1}{8} = 12.5\% \)[/tex]
29) [tex]\( \frac{2}{3} \approx 66.66666666666666\%\)[/tex]
30) [tex]\( \frac{1}{100} = 1\% \)[/tex]
31) [tex]\( 2 \frac{1}{10} = 210\% \)[/tex]
32) [tex]\( \frac{3}{8} = 37.5\% \)[/tex]
33) [tex]\( \frac{1}{10} = 10\% \)[/tex]
34) [tex]\( \frac{87}{100} = 87\% \)[/tex]