Write these decimals as fractions:

\begin{tabular}{|l|l|l|l|}
\hline
[tex]$0.3=$[/tex] & [tex]$0.5=$[/tex] & [tex]$0.6=$[/tex] & [tex]$0.02=$[/tex] \\
\hline
[tex]$0.05=$[/tex] & [tex]$0.25=$[/tex] & [tex]$0.36=$[/tex] & [tex]$0.125=$[/tex] \\
\hline
\end{tabular}



Answer :

Sure! Let's convert each of the given decimals into fractions. Here's a step-by-step explanation:

1. Decimal: 0.3

- To convert 0.3 to a fraction, notice that 0.3 is the same as [tex]\( \frac{3}{10} \)[/tex].

2. Decimal: 0.5

- To convert 0.5 to a fraction, notice that 0.5 is the same as [tex]\( \frac{1}{2} \)[/tex].

3. Decimal: 0.6

- To convert 0.6 to a fraction, notice that 0.6 is the same as [tex]\( \frac{3}{5} \)[/tex].

4. Decimal: 0.02

- To convert 0.02 to a fraction, notice that 0.02 is the same as [tex]\( \frac{1}{50} \)[/tex].

5. Decimal: 0.05

- To convert 0.05 to a fraction, notice that 0.05 is the same as [tex]\( \frac{1}{20} \)[/tex].

6. Decimal: 0.25

- To convert 0.25 to a fraction, notice that 0.25 is the same as [tex]\( \frac{1}{4} \)[/tex].

7. Decimal: 0.36

- To convert 0.36 to a fraction, notice that 0.36 is the same as [tex]\( \frac{9}{25} \)[/tex].

8. Decimal: 0.125

- To convert 0.125 to a fraction, notice that 0.125 is the same as [tex]\( \frac{1}{8} \)[/tex].

So, the final results are:

[tex]\[ \begin{array}{|l|l|l|l|} \hline 0.3 = \frac{3}{10} & 0.5 = \frac{1}{2} & 0.6 = \frac{3}{5} & 0.02 = \frac{1}{50} \\ \hline 0.05 = \frac{1}{20} & 0.25 = \frac{1}{4} & 0.36 = \frac{9}{25} & 0.125 = \frac{1}{8} \\ \hline \end{array} \][/tex]