If [tex]h(x)=6-x[/tex], what is the value of [tex](h \circ h)(10)[/tex]?

A. [tex]-4[/tex]
B. [tex]-2[/tex]
C. [tex]10[/tex]
D. [tex]16[/tex]



Answer :

To determine the value of [tex]\((h \circ h)(10)\)[/tex] where [tex]\( h(x) = 6 - x \)[/tex], we must first understand the composition of functions.

The composition [tex]\((h \circ h)(x)\)[/tex] means [tex]\(h(h(x))\)[/tex]. Here's a step-by-step solution:

1. We start by applying the function [tex]\(h(x)\)[/tex] to 10.
[tex]\[ h(10) = 6 - 10 = -4 \][/tex]

2. Next, we need to apply the function [tex]\(h(x)\)[/tex] to the result from the first step, which is [tex]\(-4\)[/tex].
[tex]\[ h(-4) = 6 - (-4) = 6 + 4 = 10 \][/tex]

Therefore, the value of [tex]\((h \circ h)(10)\)[/tex] is:
[tex]\[ 10 \][/tex]

The correct answer is [tex]\(10\)[/tex].