Answer :
To solve the equation [tex]\(\frac{1}{2}a + \frac{2}{3}b = 50\)[/tex] when [tex]\(b = 30\)[/tex], follow these steps:
1. Substitute [tex]\(b = 30\)[/tex] into the equation:
[tex]\[ \frac{1}{2}a + \frac{2}{3}(30) = 50 \][/tex]
2. Calculate [tex]\(\frac{2}{3} \times 30\)[/tex]:
[tex]\[ \frac{2}{3} \times 30 = 20 \][/tex]
3. Substitute the value back into the equation:
[tex]\[ \frac{1}{2}a + 20 = 50 \][/tex]
4. To isolate [tex]\(\frac{1}{2}a\)[/tex], subtract 20 from both sides of the equation:
[tex]\[ \frac{1}{2}a = 50 - 20 \][/tex]
[tex]\[ \frac{1}{2}a = 30 \][/tex]
5. Solve for [tex]\(a\)[/tex] by multiplying both sides of the equation by 2:
[tex]\[ a = 30 \times 2 \][/tex]
[tex]\[ a = 60 \][/tex]
Thus, the correct solution shows that when [tex]\(b = 30\)[/tex], the value of [tex]\(a\)[/tex] is [tex]\(60\)[/tex].
1. Substitute [tex]\(b = 30\)[/tex] into the equation:
[tex]\[ \frac{1}{2}a + \frac{2}{3}(30) = 50 \][/tex]
2. Calculate [tex]\(\frac{2}{3} \times 30\)[/tex]:
[tex]\[ \frac{2}{3} \times 30 = 20 \][/tex]
3. Substitute the value back into the equation:
[tex]\[ \frac{1}{2}a + 20 = 50 \][/tex]
4. To isolate [tex]\(\frac{1}{2}a\)[/tex], subtract 20 from both sides of the equation:
[tex]\[ \frac{1}{2}a = 50 - 20 \][/tex]
[tex]\[ \frac{1}{2}a = 30 \][/tex]
5. Solve for [tex]\(a\)[/tex] by multiplying both sides of the equation by 2:
[tex]\[ a = 30 \times 2 \][/tex]
[tex]\[ a = 60 \][/tex]
Thus, the correct solution shows that when [tex]\(b = 30\)[/tex], the value of [tex]\(a\)[/tex] is [tex]\(60\)[/tex].