### Powers and Exponents Assignment

Interpreting a Value to Powers

Dawn simplified a power correctly and came up with a value of 64. Which could have been the original exponential form of the expression Dawn simplified?

A. [tex](-4)^3[/tex]

B. [tex]2^6[/tex]

C. [tex]3^4[/tex]

D. [tex](-8)^2[/tex]

E. [tex](-2)^6[/tex]



Answer :

To determine which of the given exponential forms simplifies to 64, we'll calculate each one step-by-step:

1. Calculate [tex]\((-4)^3\)[/tex]:
[tex]\[ (-4)^3 = (-4) \times (-4) \times (-4) = 16 \times (-4) = -64 \][/tex]
This does not simplify to 64.

2. Calculate [tex]\(2^6\)[/tex]:
[tex]\[ 2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64 \][/tex]
This simplifies to 64. So, [tex]\(2^6\)[/tex] is a candidate.

3. Calculate [tex]\(3^4\)[/tex]:
[tex]\[ 3^4 = 3 \times 3 \times 3 \times 3 = 9 \times 9 = 81 \][/tex]
This does not simplify to 64.

4. Calculate [tex]\((-8)^2\)[/tex]:
[tex]\[ (-8)^2 = (-8) \times (-8) = 64 \][/tex]
This simplifies to 64. So, [tex]\((-8)^2\)[/tex] is also a candidate.

5. Calculate [tex]\((-2)^6\)[/tex]:
[tex]\[ (-2)^6 = (-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2) = 4 \times 4 \times 4 = 64 \][/tex]
This simplifies to 64. So, [tex]\((-2)^6\)[/tex] is also a candidate.

Thus, the original exponential forms that Dawn could have simplified to get a value of 64 are:

- [tex]\(2^6\)[/tex]
- [tex]\((-8)^2\)[/tex]
- [tex]\((-2)^6\)[/tex]