Solve the equation [tex]3x + 5y = 15[/tex] for [tex]y[/tex].

A. [tex]y = 3(15 - 3x)[/tex]
B. [tex]y = 3 - \frac{3}{5}x[/tex]
C. [tex]y = 15 - 3x[/tex]
D. [tex]y = \frac{5}{3}x - 3[/tex]



Answer :

To solve the equation [tex]\(3x + 5y = 15\)[/tex] for [tex]\(y\)[/tex], we will follow these steps:

1. Isolate the term involving [tex]\(y\)[/tex]:
Begin by subtracting [tex]\(3x\)[/tex] from both sides of the equation to move the [tex]\(3x\)[/tex] term to the right side.

[tex]\[ 3x + 5y - 3x = 15 - 3x \][/tex]

Simplifying this, we have:

[tex]\[ 5y = 15 - 3x \][/tex]

2. Solve for [tex]\(y\)[/tex]:
Next, divide every term in the equation by [tex]\(5\)[/tex] to solve for [tex]\(y\)[/tex].

[tex]\[ \frac{5y}{5} = \frac{15}{5} - \frac{3x}{5} \][/tex]

Simplifying this, we get:

[tex]\[ y = 3 - \frac{3}{5}x \][/tex]

Therefore, the correct expression for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] is:

[tex]\[ y = 3 - \frac{3}{5} x \][/tex]

3. Match the obtained solution with the given options:
We should find which one of the given options matches our solution [tex]\(y = 3 - \frac{3}{5}x\)[/tex]:

A. [tex]\(y = 3(15 - 3x)\)[/tex]
B. [tex]\(y = 3 - \frac{3}{5}x\)[/tex]
C. [tex]\(y = 15 - 3x\)[/tex]
D. [tex]\(y = \frac{5}{3}x - 3\)[/tex]

Clearly, the correct option is:

[tex]\[ \boxed{B \; y = 3 - \frac{3}{5} x} \][/tex]