Day | Hours spent on doughnuts | Hours spent on croissants | Number of doughnuts made | Number of croissants made
:---:|:---:|:---:|:---:|:---:
1 | 5 | 0 | 300 | 0
2 | 4 | 1 | 240 | [tex]20[/tex]
3 | 3 | 2 | [tex]\square[/tex] | [tex]\square[/tex]
4 | 2 | 3 | [tex]\square[/tex] | [tex]\square[/tex]
5 | 1 | 4 | [tex]\square[/tex] | [tex]\square[/tex]
6 | 0 | 5 | 0 | 100

In one hour of work, Raj can make 60 doughnuts or 20 croissants. Refer to that information and use the drop-down menu to fill in the missing parts of the production possibility schedule.

(1) [tex]\square[/tex] (2) [tex]\square[/tex] (3) [tex]\square[/tex]



Answer :

Let's break down the given information and the production schedule step-by-step to fill in the missing parts.

From the data provided, we know the following production rates:
- Raj can make 60 doughnuts in one hour.
- Raj can make 20 croissants in one hour.

Now we analyze each day:

### Day 1:
- Hours spent on doughnuts: 5
- Number of doughnuts made: [tex]\( 5 \text{ hours} \times 60 \text{ doughnuts/hour} = 300 \text{ doughnuts} \)[/tex]
- Hours spent on croissants: 0
- Number of croissants made: [tex]\( 0 \text{ hours} \times 20 \text{ croissants/hour} = 0 \text{ croissants} \)[/tex]

### Day 2:
- Hours spent on doughnuts: 4
- Number of doughnuts made: [tex]\( 4 \text{ hours} \times 60 \text{ doughnuts/hour} = 240 \text{ doughnuts} \)[/tex]
- Hours spent on croissants: 1
- Number of croissants made: [tex]\( 1 \text{ hour} \times 20 \text{ croissants/hour} = 20 \text{ croissants} \)[/tex]

From this analysis, we can fill in the missing value in the production schedule:

Therefore, the missing value in the schedule is:
(1) [tex]\(\boxed{20}\)[/tex]