Consider the equation and its solution.

[tex]\[
\begin{array}{r}
-15(x-\square)=25 \\
-15x + 30 = 25 \\
-15x = -5 \\
x = \frac{1}{3}
\end{array}
\][/tex]

What number should be in the empty box?

A. [tex]\(-30\)[/tex]
B. [tex]\(-2\)[/tex]
C. 2
D. 30



Answer :

Let's analyze the given equation step by step to find what number should be in the empty box.

1. The equation given is:
[tex]\[ -15(x - \square) = 25 \][/tex]

2. Distribute the [tex]\(-15\)[/tex] inside the parenthesis:
[tex]\[ -15(x - \square) = -15x + 15 \cdot \square \][/tex]

3. We are given the next step in the equation:
[tex]\[ -15x + 30 = 25 \][/tex]

4. By comparing the two equations [tex]\(-15x + 15 \cdot \square = 25\)[/tex] and [tex]\(-15x + 30 = 25\)[/tex], it becomes clear that:
[tex]\[ 15 \cdot \square = 30 \][/tex]

5. To isolate the empty box (denoted as [tex]\(\square\)[/tex]), we solve for it:
[tex]\[ \square = \frac{30}{15} \][/tex]

6. Calculate the division:
[tex]\[ \square = 2 \][/tex]

So, the correct number to fill in the box is [tex]\(2\)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{2} \][/tex]