Let's analyze the given equation step by step to find what number should be in the empty box.
1. The equation given is:
[tex]\[
-15(x - \square) = 25
\][/tex]
2. Distribute the [tex]\(-15\)[/tex] inside the parenthesis:
[tex]\[
-15(x - \square) = -15x + 15 \cdot \square
\][/tex]
3. We are given the next step in the equation:
[tex]\[
-15x + 30 = 25
\][/tex]
4. By comparing the two equations [tex]\(-15x + 15 \cdot \square = 25\)[/tex] and [tex]\(-15x + 30 = 25\)[/tex], it becomes clear that:
[tex]\[
15 \cdot \square = 30
\][/tex]
5. To isolate the empty box (denoted as [tex]\(\square\)[/tex]), we solve for it:
[tex]\[
\square = \frac{30}{15}
\][/tex]
6. Calculate the division:
[tex]\[
\square = 2
\][/tex]
So, the correct number to fill in the box is [tex]\(2\)[/tex].
Therefore, the answer is:
[tex]\[
\boxed{2}
\][/tex]