\begin{tabular}{|c|c|}
\hline
In & Out \\
\hline
1 & 3 \\
\hline
2 & 9 \\
\hline
3 & 15 \\
\hline
\end{tabular}

The table above gives the inputs and outputs for a linear function. What is the output when the input is 6?



Answer :

To find the output when the input is 6 given the input-output pairs of a linear function, follow these steps:

1. Identify the given input-output pairs and express them as coordinates:
- (1, 3)
- (2, 9)
- (3, 15)

2. Calculate the slope (m) of the linear function:
- The slope [tex]\(m\)[/tex] is calculated using two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] with the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Using the points (1, 3) and (2, 9):
[tex]\[ m = \frac{9 - 3}{2 - 1} = \frac{6}{1} = 6 \][/tex]

3. Determine the y-intercept (b) of the linear function:
- The linear function is given by the equation:
[tex]\[ y = mx + b \][/tex]
- Using one of the points, for example, (1, 3), and the calculated slope [tex]\(m = 6\)[/tex]:
[tex]\[ 3 = 6 \cdot 1 + b \][/tex]
- Solving for [tex]\(b\)[/tex]:
[tex]\[ 3 = 6 + b \implies b = 3 - 6 = -3 \][/tex]

4. Construct the linear equation with the calculated slope and y-intercept:
- The linear function is:
[tex]\[ y = 6x - 3 \][/tex]

5. Find the output for the input value 6:
- Substitute [tex]\(x = 6\)[/tex] into the linear equation:
[tex]\[ y = 6 \cdot 6 - 3 = 36 - 3 = 33 \][/tex]

Therefore, the output when the input is 6 is:
[tex]\[ \boxed{33} \][/tex]