A, B, and C are polynomials, where:
[tex]\[
\begin{array}{l}
A = 3x - 4 \\
B = x + 7 \\
C = x^2 + 2
\end{array}
\][/tex]

What is [tex]\[A^2 - (B + C)\][/tex] in simplest form?

A. [tex]\(8x^2 - 25x + 7\)[/tex]

B. [tex]\(8x^2 - 25x + 11\)[/tex]

C. [tex]\(10x^2 - 25x + 7\)[/tex]

D. [tex]\(10x^2 - 25x + 11\)[/tex]



Answer :

To solve the problem step-by-step, we need to determine the expression [tex]\( A^2 - (B + C) \)[/tex] in its simplest form. Let's analyze each component individually.

Given polynomials are:
[tex]\[ A = 3x - 4 \][/tex]
[tex]\[ B = x + 7 \][/tex]
[tex]\[ C = x^2 + 2 \][/tex]

1. Calculate [tex]\( A^2 \)[/tex]:
[tex]\[ A = 3x - 4 \][/tex]
[tex]\[ A^2 = (3x - 4)^2 \][/tex]

Expanding [tex]\( (3x - 4)^2 \)[/tex] using the binomial expansion formula [tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex]:
[tex]\[ (3x - 4)^2 = (3x)^2 - 2 \cdot 3x \cdot 4 + 4^2 \][/tex]
[tex]\[ = 9x^2 - 24x + 16 \][/tex]

2. Calculate [tex]\( B + C \)[/tex]:
[tex]\[ B = x + 7 \][/tex]
[tex]\[ C = x^2 + 2 \][/tex]

So, [tex]\( B + C \)[/tex] is:
[tex]\[ B + C = (x + 7) + (x^2 + 2) \][/tex]
[tex]\[ = x^2 + x + 9 \][/tex]

3. Calculate [tex]\( A^2 - (B + C) \)[/tex]:
We now have:
[tex]\[ A^2 = 9x^2 - 24x + 16 \][/tex]
[tex]\[ B + C = x^2 + x + 9 \][/tex]

So:
[tex]\[ A^2 - (B + C) = (9x^2 - 24x + 16) - (x^2 + x + 9) \][/tex]

Subtracting the polynomials:
[tex]\[ = 9x^2 - 24x + 16 - x^2 - x - 9 \][/tex]

Combine like terms:
[tex]\[ = (9x^2 - x^2) + (-24x - x) + (16 - 9) \][/tex]
[tex]\[ = 8x^2 - 25x + 7 \][/tex]

Thus, the simplified form of [tex]\( A^2 - (B + C) \)[/tex] is:
[tex]\[ 8x^2 - 25x + 7 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{8x^2 - 25x + 7} \][/tex]