How many chlorine molecules are in 6.5 moles of chlorine?

Enter your answer with the correct number of significant figures and be sure the prefix is a number between 1 and 10!

[tex]\[
[?] \times 10^{[?]}
\][/tex]

Prefix (green):
Exponent (yellow):



Answer :

To determine the number of chlorine molecules in 6.5 moles of chlorine, we should use Avogadro's number, which is approximately [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole. Here’s a step-by-step approach to solving this problem:

1. Identify the given values:
- Number of moles of chlorine ([tex]\( \text{Cl}_2 \)[/tex]): 6.5 moles
- Avogadro's number: [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole

2. Compute the total number of chlorine molecules:
- Multiply the number of moles by Avogadro's number:
[tex]\[ \text{Number of molecules} = \text{moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of molecules} = 6.5 \times 6.022 \times 10^{23} \][/tex]

3. Calculate the product:
- First, calculate the product of the numerical values:
[tex]\[ 6.5 \times 6.022 = 39.143 \][/tex]
- Then, incorporate the power of [tex]\(10\)[/tex]:
[tex]\[ 39.143 \times 10^{23} \][/tex]

4. Express the result in scientific notation:
- To convert [tex]\(39.143 \times 10^{23}\)[/tex] into proper scientific notation ([tex]\(a \times 10^b\)[/tex], where [tex]\(1 \leq a < 10\)[/tex]):
[tex]\[ 39.143 = 3.9143 \times 10^1 \][/tex]
- Therefore, multiplying this by [tex]\(10^{23}\)[/tex]:
[tex]\[ 3.9143 \times 10^1 \times 10^{23} = 3.9143 \times 10^{24} \][/tex]

5. Final answer:
- The number of chlorine molecules in 6.5 moles of chlorine is:
[tex]\[ 3.9143 \times 10^{24} \][/tex]

So, the prefix is [tex]\(3.9143\)[/tex] and the exponent is [tex]\(24\)[/tex].