Select the correct answer.

Consider this equation:

[tex] \sin (\theta) = \frac{\sqrt{37}}{37} \]

If [tex] \theta [/tex] is an angle in quadrant II, what is the value of [tex] \tan (\theta) [/tex]?

A. [tex] -\frac{1}{6} [/tex]

B. [tex] -\frac{6 \sqrt{37}}{37} [/tex]

C. [tex] \frac{6 \sqrt{37}}{37} [/tex]

D. [tex] \frac{1}{6} [/tex]



Answer :

To solve for [tex]\(\tan(\theta)\)[/tex] given [tex]\(\sin(\theta) = \frac{\sqrt{37}}{37}\)[/tex] and [tex]\(\theta\)[/tex] is in quadrant II, follow these steps:

1. Identify [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ \sin(\theta) = \frac{\sqrt{37}}{37} \][/tex]

2. Recognize that [tex]\(\theta\)[/tex] is in quadrant II:
In quadrant II, the sine function is positive, and the cosine function is negative.

3. Use the Pythagorean identity to find [tex]\(\cos(\theta)\)[/tex]:
The Pythagorean identity states:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Substituting [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ \left(\frac{\sqrt{37}}{37}\right)^2 + \cos^2(\theta) = 1 \][/tex]
Simplifying the square:
[tex]\[ \frac{37}{1369} + \cos^2(\theta) = 1 \][/tex]
Solving for [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = 1 - \frac{37}{1369} = \frac{1369}{1369} - \frac{37}{1369} = \frac{1332}{1369} \][/tex]
Therefore:
[tex]\[ \cos(\theta) = \pm \sqrt{\frac{1332}{1369}} = \pm \frac{\sqrt{1332}}{37} \][/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II, [tex]\(\cos(\theta)\)[/tex] is negative:
[tex]\[ \cos(\theta) = -\frac{\sqrt{1332}}{37} \][/tex]

4. Simplify [tex]\(\sqrt{1332}\)[/tex]:
[tex]\(\sqrt{1332}\)[/tex] can be simplified, but we have calculated it for us and know:
[tex]\[ \cos(\theta) \approx -0.9863939238321437 \][/tex]

5. Calculate [tex]\(\tan(\theta)\)[/tex]:
The tangent function is defined as the ratio of sine to cosine:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{\sqrt{37}}{37}}{-\frac{\sqrt{1332}}{37}} = -\frac{\sqrt{37}}{\sqrt{1332}} \][/tex]
Simplifying this fraction gives:
[tex]\[ \tan(\theta) \approx -0.16666666666666666 \][/tex]

Converting that to a fraction, we get:
[tex]\[ \tan(\theta) = -\frac{1}{6} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{-\frac{1}{6}} \][/tex]