Answer :
Let's address each part of your question step by step:
### 1) [tex]\( 312 + 3227 \)[/tex]
To find the sum of [tex]\( 312 \)[/tex] and [tex]\( 3227 \)[/tex]:
- Start by aligning the numbers by their place values:
```
312
+ 3227
```
- Add the digits starting from the rightmost digit (units):
- Units: [tex]\( 2 + 7 = 9 \)[/tex]
- Tens: [tex]\( 1 + 2 = 3 \)[/tex]
- Hundreds: [tex]\( 3 + 2 = 5 \)[/tex]
- Add remaining thousand:
- Thousand: [tex]\( 3 + 0 = 3 \)[/tex]
So, adding these values together gives the sum:
[tex]\[ 312 + 3227 = 3539 \][/tex]
### 2) [tex]\( 4.12 + 7.23 \)[/tex]
To find the sum of [tex]\( 4.12 \)[/tex] and [tex]\( 7.23 \)[/tex]:
- Align the numbers by their decimal points:
```
4.12
+ 7.23
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 2 + 3 = 5 \)[/tex]
- Tenths: [tex]\( 1 + 2 = 3 \)[/tex]
- Units: [tex]\( 4 + 7 = 11 \)[/tex] (note: this should be understood as [tex]\( 1 \)[/tex] carry over to the next place, but since it's single digit addition here, no carry)
So, adding these values together gives the sum:
[tex]\[ 4.12 + 7.23 = 11.35 \][/tex]
### 3) [tex]\( 10.01 + 9.95 \)[/tex]
To find the sum of [tex]\( 10.01 \)[/tex] and [tex]\( 9.95 \)[/tex]:
- Align the numbers by their decimal points:
```
10.01
+ 9.95
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 1 + 5 = 6 \)[/tex]
- Tenths: [tex]\( 0 + 9 = 9 \)[/tex]
- Units: [tex]\( 0 + 9 = 9 \)[/tex]
- Tens: [tex]\( 1 + 0 = 1 \)[/tex]
So, adding these values together gives the sum:
[tex]\[ 10.01 + 9.95 = 19.96 \][/tex]
### 4) [tex]\( \$916.25 + 14.7 \)[/tex]
To find the sum of [tex]\( 916.25 \)[/tex] and [tex]\( 14.7 \)[/tex]:
- Align the numbers by their decimal points. To make addition easier, we can write [tex]\( 14.7 \)[/tex] as [tex]\( 14.70 \)[/tex]:
```
916.25
+ 14.70
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 5 + 0 = 5 \)[/tex]
- Tenths: [tex]\( 2 + 7 = 9 \)[/tex]
- Units: [tex]\( 6 + 4 = 10 \)[/tex] (write 0 and carry 1)
- Tens: [tex]\( 9 + 1 = 10 \)[/tex] (plus carried 1)
- Hundreds: [tex]\( 9\)[/tex] (plus carried 1 from the tens addition)
So, adding these values together gives the sum:
[tex]\[ \$916.25 + 14.7 = \$930.95 \][/tex]
### Summary:
- [tex]\( 312 + 3227 = 3539 \)[/tex]
- [tex]\( 4.12 + 7.23 = 11.35 \)[/tex]
- [tex]\( 10.01 + 9.95 = 19.96 \)[/tex]
- [tex]\( \$916.25 + 14.7 = \$930.95 \)[/tex]
These results align with the numerical results calculated.
### 1) [tex]\( 312 + 3227 \)[/tex]
To find the sum of [tex]\( 312 \)[/tex] and [tex]\( 3227 \)[/tex]:
- Start by aligning the numbers by their place values:
```
312
+ 3227
```
- Add the digits starting from the rightmost digit (units):
- Units: [tex]\( 2 + 7 = 9 \)[/tex]
- Tens: [tex]\( 1 + 2 = 3 \)[/tex]
- Hundreds: [tex]\( 3 + 2 = 5 \)[/tex]
- Add remaining thousand:
- Thousand: [tex]\( 3 + 0 = 3 \)[/tex]
So, adding these values together gives the sum:
[tex]\[ 312 + 3227 = 3539 \][/tex]
### 2) [tex]\( 4.12 + 7.23 \)[/tex]
To find the sum of [tex]\( 4.12 \)[/tex] and [tex]\( 7.23 \)[/tex]:
- Align the numbers by their decimal points:
```
4.12
+ 7.23
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 2 + 3 = 5 \)[/tex]
- Tenths: [tex]\( 1 + 2 = 3 \)[/tex]
- Units: [tex]\( 4 + 7 = 11 \)[/tex] (note: this should be understood as [tex]\( 1 \)[/tex] carry over to the next place, but since it's single digit addition here, no carry)
So, adding these values together gives the sum:
[tex]\[ 4.12 + 7.23 = 11.35 \][/tex]
### 3) [tex]\( 10.01 + 9.95 \)[/tex]
To find the sum of [tex]\( 10.01 \)[/tex] and [tex]\( 9.95 \)[/tex]:
- Align the numbers by their decimal points:
```
10.01
+ 9.95
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 1 + 5 = 6 \)[/tex]
- Tenths: [tex]\( 0 + 9 = 9 \)[/tex]
- Units: [tex]\( 0 + 9 = 9 \)[/tex]
- Tens: [tex]\( 1 + 0 = 1 \)[/tex]
So, adding these values together gives the sum:
[tex]\[ 10.01 + 9.95 = 19.96 \][/tex]
### 4) [tex]\( \$916.25 + 14.7 \)[/tex]
To find the sum of [tex]\( 916.25 \)[/tex] and [tex]\( 14.7 \)[/tex]:
- Align the numbers by their decimal points. To make addition easier, we can write [tex]\( 14.7 \)[/tex] as [tex]\( 14.70 \)[/tex]:
```
916.25
+ 14.70
```
- Adding the digits starting from the rightmost decimal place:
- Hundredths: [tex]\( 5 + 0 = 5 \)[/tex]
- Tenths: [tex]\( 2 + 7 = 9 \)[/tex]
- Units: [tex]\( 6 + 4 = 10 \)[/tex] (write 0 and carry 1)
- Tens: [tex]\( 9 + 1 = 10 \)[/tex] (plus carried 1)
- Hundreds: [tex]\( 9\)[/tex] (plus carried 1 from the tens addition)
So, adding these values together gives the sum:
[tex]\[ \$916.25 + 14.7 = \$930.95 \][/tex]
### Summary:
- [tex]\( 312 + 3227 = 3539 \)[/tex]
- [tex]\( 4.12 + 7.23 = 11.35 \)[/tex]
- [tex]\( 10.01 + 9.95 = 19.96 \)[/tex]
- [tex]\( \$916.25 + 14.7 = \$930.95 \)[/tex]
These results align with the numerical results calculated.