What is the slope of a line that passes through the points [tex]$(-3,-5)$[/tex] and [tex]$(1,7)$[/tex] in the [tex][tex]$xy$[/tex][/tex]-plane?

Choose one answer:
A. 6
B. 3
C. [tex]$\frac{1}{2}$[/tex]
D. -1



Answer :

To determine the slope of a line that passes through two points in the [tex]\(xy\)[/tex]-plane, we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, the coordinates of the two points are given as:
[tex]\[ (x_1, y_1) = (-3, -5) \][/tex]
[tex]\[ (x_2, y_2) = (1, 7) \][/tex]

Substitute these coordinates into the slope formula:

[tex]\[ \text{slope} = \frac{7 - (-5)}{1 - (-3)} \][/tex]

First, simplify the numerator:

[tex]\[ 7 - (-5) = 7 + 5 = 12 \][/tex]

Next, simplify the denominator:

[tex]\[ 1 - (-3) = 1 + 3 = 4 \][/tex]

Now, we can compute the slope:

[tex]\[ \text{slope} = \frac{12}{4} = 3.0 \][/tex]

Therefore, the slope of the line that passes through the points [tex]\((-3, -5)\)[/tex] and [tex]\((1, 7)\)[/tex] is:

[tex]\[ \boxed{3} \][/tex]