All computers are on sale for [tex]10 \%[/tex] off the original price.

If [tex]x[/tex] is the original price of the computer, then the function that represents the price after only a [tex]10 \%[/tex] discount is:

[tex]\[ P(x) = x - 0.1x \][/tex]
[tex]\[ P(x) = 0.9x \][/tex]

The function that gives the price, [tex]C[/tex], if only a [tex]\$ 150[/tex] coupon is used is:

\[ C(x) = x - 150 \]

Choose the composition function that gives the final sale price after a [tex]10 \%[/tex] discount is followed by a [tex]\$ 150[/tex] coupon:

[tex]\[ C(P(x)) = 0.9x - 150 \][/tex]



Answer :

Let's analyze the given problem in a step-by-step manner.

First, we need to find the price after applying a [tex]\(10 \%\)[/tex] discount on the original price [tex]\(x\)[/tex]:
[tex]\[ P(x) = 0.9x \][/tex]

Next, the function [tex]\(C(x)\)[/tex] applies a discount of [tex]\(\$150\)[/tex] on the price [tex]\(x\)[/tex]:
[tex]\[ C(x) = x - 150 \][/tex]

Now, we need to find the composition function [tex]\(C(P(x))\)[/tex], which represents applying a [tex]\(10 \%\)[/tex] discount first and then using a [tex]$\$[/tex]150$ coupon.

Let's substitute [tex]\(P(x)\)[/tex] into [tex]\(C(x)\)[/tex]:

[tex]\[ C(P(x)) = C(0.9x) = 0.9x - 150 \][/tex]

So the correct composition function is:
[tex]\[ C(P(x)) = 0.9x - 150 \][/tex]

Upon reviewing the options:
[tex]\[ \begin{array}{l} C(P(x)) = 1.9x - 150 \\ C(P(x)) = 0.9x - 150 \\ P(C(x)) = 1.9x - 150 \end{array} \][/tex]

The right choice is:
[tex]\[ C(P(x)) = 0.9x - 150 \][/tex]

Therefore, the final answer is [tex]\(0.9, -150, -149.1\)[/tex].