Answer :
To solve the formula [tex]\( P = 4 \pi I r^2 \)[/tex] for the distance [tex]\( r \)[/tex], we will follow these steps rigorously:
1. Start with the given formula:
[tex]\[ P = 4 \pi I r^2 \][/tex]
2. Isolate the term containing [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{P}{4 \pi I} \][/tex]
3. Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \pm \sqrt{\frac{P}{4 \pi I}} \][/tex]
Since the distance [tex]\( r \)[/tex] cannot be negative, we take the positive solution. Thus, we have:
[tex]\[ r = \sqrt{\frac{P}{4 \pi I}} \][/tex]
4. Simplify the expression further. Notice that:
[tex]\[ \sqrt{\frac{P}{4 \pi I}} = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]
Thus, the simplified formula for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C. \, r = \frac{1}{2} \sqrt{\frac{P}{\pi I}}} \][/tex]
1. Start with the given formula:
[tex]\[ P = 4 \pi I r^2 \][/tex]
2. Isolate the term containing [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{P}{4 \pi I} \][/tex]
3. Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \pm \sqrt{\frac{P}{4 \pi I}} \][/tex]
Since the distance [tex]\( r \)[/tex] cannot be negative, we take the positive solution. Thus, we have:
[tex]\[ r = \sqrt{\frac{P}{4 \pi I}} \][/tex]
4. Simplify the expression further. Notice that:
[tex]\[ \sqrt{\frac{P}{4 \pi I}} = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]
Thus, the simplified formula for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C. \, r = \frac{1}{2} \sqrt{\frac{P}{\pi I}}} \][/tex]