Sound waves can be ranked by their intensity, [tex]I[/tex], given in the formula below, where [tex]r[/tex] is the distance from the source of a sound with a power output of [tex]P[/tex].

[tex]\[ P = 4 \pi I r^2 \][/tex]

Solve the formula for the distance from the source, [tex]r[/tex].

A. [tex]\[ r = \frac{1}{4} \sqrt{\frac{P}{\pi I}} \][/tex]
B. [tex]\[ r = \frac{1}{2} \sqrt{\frac{\pi I}{P}} \][/tex]
C. [tex]\[ r = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]
D. [tex]\[ r = \frac{1}{4} \sqrt{\frac{\pi I}{P}} \][/tex]



Answer :

To solve the formula [tex]\( P = 4 \pi I r^2 \)[/tex] for the distance [tex]\( r \)[/tex], we will follow these steps rigorously:

1. Start with the given formula:
[tex]\[ P = 4 \pi I r^2 \][/tex]

2. Isolate the term containing [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{P}{4 \pi I} \][/tex]

3. Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \pm \sqrt{\frac{P}{4 \pi I}} \][/tex]

Since the distance [tex]\( r \)[/tex] cannot be negative, we take the positive solution. Thus, we have:
[tex]\[ r = \sqrt{\frac{P}{4 \pi I}} \][/tex]

4. Simplify the expression further. Notice that:
[tex]\[ \sqrt{\frac{P}{4 \pi I}} = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]

Thus, the simplified formula for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{1}{2} \sqrt{\frac{P}{\pi I}} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{C. \, r = \frac{1}{2} \sqrt{\frac{P}{\pi I}}} \][/tex]