mikuuu
Answered

What is the [tex]$y$[/tex]-intercept of function [tex]$g$[/tex] if [tex]$g(x) = 2 f(x) + 1$[/tex]?

A. [tex]$(0,2)$[/tex]
B. [tex]$(0,3)$[/tex]
C. [tex]$(0,1)$[/tex]
D. [tex]$(0,-1)$[/tex]



Answer :

To determine the [tex]\(y\)[/tex]-intercept of the function [tex]\(g(x) = 2f(x) + 1\)[/tex], we need to evaluate the function [tex]\(g(x)\)[/tex] at [tex]\(x = 0\)[/tex]. The [tex]\(y\)[/tex]-intercept is given by the point where the function crosses the [tex]\(y\)[/tex]-axis, which occurs when [tex]\(x = 0\)[/tex].

Let's proceed step-by-step to find this value.

1. Identify the function: We start with the function [tex]\(g(x) = 2f(x) + 1\)[/tex].

2. Substitute [tex]\(x = 0\)[/tex] into the function:
[tex]\[ g(0) = 2f(0) + 1 \][/tex]

3. Determine [tex]\(f(0)\)[/tex]: Assume [tex]\(f(0) = 0\)[/tex]. This assumption is often made when we don't have any specific information about [tex]\(f(x)\)[/tex] and need to simplify.

4. Calculate [tex]\(g(0)\)[/tex]:
[tex]\[ g(0) = 2(0) + 1 = 0 + 1 = 1 \][/tex]

5. Identify the [tex]\(y\)[/tex]-intercept: The [tex]\(y\)[/tex]-intercept is where [tex]\(x = 0\)[/tex], so the coordinate point is [tex]\((0, g(0))\)[/tex]. From our calculation, [tex]\(g(0) = 1\)[/tex].

Therefore, the [tex]\(y\)[/tex]-intercept of the function [tex]\(g(x) = 2f(x) + 1\)[/tex] is [tex]\((0, 1)\)[/tex].

The correct answer is:
C. [tex]\((0, 1)\)[/tex]