Answer :
The center is at the origin and the point [tex](3,0)[/tex] lies on the circle, so [tex]r=3[/tex]
[tex]A=\pi r^2\\ A=\pi \cdot3^2\\ A=9\pi\\ A\approx28.27[/tex]
[tex]A=\pi r^2\\ A=\pi \cdot3^2\\ A=9\pi\\ A\approx28.27[/tex]
we know that
the equation of a circle with the center at the origin is equal to
[tex] x^{2} +y^{2} =r^{2} [/tex]
step 1
with the point (3,0) find the value of the radius
substitute the values of
[tex] x=3\\ y=0 [/tex]
in the equation of the circle above
so
[tex] 3^{2} +0^{2} =r^{2} [/tex]
[tex] 3^{2} =r^{2} [/tex]
[tex] r =3 [/tex]
step 2
with the radius find the area of the circle
area of the circle is equal to
[tex] A=\pi *r^{2} [/tex]
for [tex] r=3 [/tex]
[tex] A=\pi *3^{2} [/tex]
[tex] A=28.27 [/tex]units²
therefore
the answer is
the area of the circle to the nearest hundredth is [tex] A=28.27 [/tex]units²