Answer :

Answer:

[tex]\[\boxed{\frac{7}{3} \pi \, \text{cm}^2}\][/tex]

Step-by-step explanation:

1. Find the area of the sector [tex]\( AOB \)[/tex] of the larger circle:

  The larger circle has a radius of 4 cm and the sector [tex]\( AOB \)[/tex] subtends an angle of [tex]\( 120^\circ \)[/tex].

 [tex]\[ \text{Area of sector } AOB = \frac{120^\circ}{360^\circ} \times \pi \times (4 \, \text{cm})^2 = \frac{1}{3} \pi \times 16 \, \text{cm}^2 = \frac{16}{3} \pi \, \text{cm}^2 \][/tex]

2. Find the area of the sector [tex]\( DOB \)[/tex] of the smaller circle:

  The smaller circle has a radius of 3 cm and the sector \( DOB \) also subtends an angle of [tex]\( 120^\circ \)[/tex].

[tex]\[ \text{Area of sector } DOB = \frac{120^\circ}{360^\circ} \times \pi \times (3 \, \text{cm})^2 = \frac{1}{3} \pi \times 9 \, \text{cm}^2 = 3 \pi \, \text{cm}^2 \][/tex]

3. Find the area of the shaded region:

  The shaded region is the difference between the area of sector [tex]\( AOB \)[/tex] and the area of sector[tex]\( DOB \)[/tex].

[tex]\[ \text{Area of shaded region} = \frac{16}{3} \pi \, \text{cm}^2 - 3 \pi \, \text{cm}^2 \][/tex]

  Simplify the expression:

[tex]\[ \frac{16}{3} \pi - 3 \pi = \frac{16}{3} \pi - \frac{9}{3} \pi = \frac{16 - 9}{3} \pi = \frac{7}{3} \pi \][/tex]

Therefore, the area of the shaded regions is:

[tex]\[\boxed{\frac{7}{3} \pi \, \text{cm}^2}\][/tex]