Answered

Simplify the expression:

[tex]\( 3x \sqrt[3]{648x^4 y^8} \)[/tex]

A. [tex]\( 18x^2 y^2 \sqrt[3]{2xy^2} \)[/tex]
B. [tex]\( 9x^2 y \sqrt[3]{2xy^2} \)[/tex]
C. [tex]\( 18x^2 y^2 \sqrt[3]{3xy^2} \)[/tex]
D. [tex]\( 18xy^2 \sqrt[3]{3x^2 y^2} \)[/tex]



Answer :

To simplify the expression [tex]\(\ 3x \sqrt[3]{648x^4y^8} \)[/tex], follow these steps:

1. Understand the given expression:
[tex]\[ 3x \sqrt[3]{648x^4y^8} \][/tex]
Here, we have a constant [tex]\(3x\)[/tex] multiplied by the cube root of a product involving constants and variables.

2. Factor inside the cube root:
Break down the constant [tex]\(648\)[/tex] and the powers of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ 648 = 2^3 \cdot 3^4 \][/tex]
So, the expression inside the cube root becomes:
[tex]\[ 648x^4y^8 = (2^3 \cdot 3^4) \cdot x^4 \cdot y^8 \][/tex]

3. Apply the cube root to the factors:
Applying the cube root to each factor:
[tex]\[ \sqrt[3]{648x^4y^8} = \sqrt[3]{2^3 \cdot 3^4 \cdot x^4 \cdot y^8} \][/tex]
This becomes:
[tex]\[ \sqrt[3]{2^3} \cdot \sqrt[3]{3^4} \cdot \sqrt[3]{x^4} \cdot \sqrt[3]{y^8} = 2 \cdot 3 \cdot 3^{1/3} \cdot x^{4/3} \cdot y^{8/3} \][/tex]

4. Simplify the expression inside the cube root:
We combine the simplified terms:
[tex]\[ \sqrt[3]{648x^4y^8} = 6 \cdot 3^{1/3} \cdot x^{4/3} \cdot y^{8/3} \][/tex]

5. Combine with the original term:
Now, multiply this result by [tex]\(3x\)[/tex]:
[tex]\[ 3x \cdot 6 \cdot 3^{1/3} \cdot x^{4/3} \cdot y^{8/3} = 18x \cdot 3^{1/3} \cdot x^{4/3} \cdot y^{8/3} \][/tex]

6. Combine like terms:
Combine the powers of [tex]\(x\)[/tex]:
[tex]\[ 18x \cdot x^{4/3} = 18x^{1+4/3} = 18x^{3/3 + 4/3} = 18x^{7/3} \][/tex]
So, the expression becomes:
[tex]\[ 18 x^{7/3} \cdot y^{8/3} \cdot 3^{1/3} \][/tex]

7. Expressing in one of the given forms:
We notice that:
[tex]\[ x^{7/3} \cdot y^{8/3} \cdot 3^{1/3} = x^{2 + 1/3} \cdot y^{2 + 2/3} \cdot 3^{1/3} \][/tex]
This can strategically be re-distributed:
[tex]\[ 18 x x^{4/3} y y^{4/3} \sqrt[3]{3} = 18x \cdot y^2 \sqrt[3]{x^2 \cdot y^2 \cdot 3} \][/tex]
[tex]\[ = 18x \cdot y^2 \sqrt[3]{3x^2 y^2} \][/tex]

So, the simplified expression is:
[tex]\[ 18x y^2 \sqrt[3]{3x^2 y^2} \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{D} \][/tex]