Answer :

To factor the expression [tex]\( 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \)[/tex], follow these steps:

1. Identify the common factor in the terms of the expression.

The expression is:
[tex]\[ 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \][/tex]

2. Factor out the greatest common factor from the expression.

Both terms share a common factor of [tex]\( 2 \)[/tex]. Let’s factor the [tex]\( 2 \)[/tex] out:
[tex]\[ 2 ( x^{\frac{1}{4}} + 10 x^{\frac{1}{2}} ) \][/tex]

3. Simplify the remaining expression inside the parentheses.

Notice that within the parentheses, each term involves [tex]\( x \)[/tex] raised to a power. To factor further if possible, we should express the terms using the same base power of [tex]\( x \)[/tex]:
[tex]\[ 2 \left( x^{\frac{1}{4}} + 10 x^{\frac{2}{4}} \right) \][/tex]

Here, [tex]\( x^{\frac{1}{2}} \)[/tex] is rewritten as [tex]\( x^{\frac{2}{4}} \)[/tex].

4. Compare and identify common factors inside the parentheses (Optional if needed for complex factors).

Given the simplified terms are now [tex]\( x^{\frac{1}{4}} \)[/tex] and [tex]\( x^{\frac{2}{4}} \)[/tex] (already simplified):
[tex]\[ 2 \left( x^{0.25} + 10 x^{0.5} \right) \][/tex]

Since there are no further common factors within the parentheses, the expression remains:
[tex]\[ 2 ( x^{0.25} + 10 x^{0.5} ) \][/tex]

Thus, the final factored form of the given expression [tex]\( 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \)[/tex] is:
[tex]\[ 2 ( x^{\frac{1}{4}} + 10 x^{\frac{1}{2}} ) \][/tex]

Or equivalently:
[tex]\[ 2 ( x^{0.25} + 10 x^{0.5} ) \][/tex]