Sure, let's solve for [tex]\( f(2) \)[/tex] given the function [tex]\( f(x) = x^3 + x^2 \)[/tex].
First, we start by substituting [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex].
[tex]\[
f(x) = x^3 + x^2
\][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[
f(2) = 2^3 + 2^2
\][/tex]
Next, we calculate each term separately:
[tex]\[
2^3 = 8
\][/tex]
[tex]\[
2^2 = 4
\][/tex]
Now, we add these results together:
[tex]\[
8 + 4 = 12
\][/tex]
Therefore, [tex]\( f(2) = 12 \)[/tex].
So, the result is:
[tex]\[
f(2) = 12
\][/tex]