Answer :

Sure, let's solve for [tex]\( f(2) \)[/tex] given the function [tex]\( f(x) = x^3 + x^2 \)[/tex].

First, we start by substituting [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex].

[tex]\[ f(x) = x^3 + x^2 \][/tex]

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[ f(2) = 2^3 + 2^2 \][/tex]

Next, we calculate each term separately:

[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ 2^2 = 4 \][/tex]

Now, we add these results together:

[tex]\[ 8 + 4 = 12 \][/tex]

Therefore, [tex]\( f(2) = 12 \)[/tex].

So, the result is:
[tex]\[ f(2) = 12 \][/tex]