Find the area of an equilateral triangle with a side length of 5 cm.

A. [tex]\(\frac{5 \sqrt{3}}{4} \, \text{cm}^2\)[/tex]

B. [tex]\(6.25 \, \text{cm}^2\)[/tex]

C. [tex]\(6.25 \sqrt{3} \, \text{cm}^2\)[/tex]

D. [tex]\(12.5 \, \text{cm}^2\)[/tex]



Answer :

To find the area of an equilateral triangle with a side length of [tex]\(5\)[/tex] cm, we can use the formula for the area of an equilateral triangle:

[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times (\text{side length})^2 \][/tex]

In this case, the side length is [tex]\(5\)[/tex] cm. Let's apply the given values to the formula:

1. Square the side length:
[tex]\[ (\text{side length})^2 = 5^2 = 25 \][/tex]

2. Multiply by [tex]\(\frac{\sqrt{3}}{4}\)[/tex]:
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times 25 \][/tex]

3. Perform the multiplication:
[tex]\[ \text{Area} = \frac{25 \sqrt{3}}{4} \][/tex]

We know from computation that the numerical value of this expression is:
[tex]\[ 10.825317547305483 \][/tex]

Thus, the closest option that matches this result is the given numerical value for the area of the equilateral triangle, which is approximately [tex]\(10.83 \ \text{cm}^2\)[/tex].

However, let's match this with the given options:

- [tex]\( \frac{5 \sqrt{3}}{4} \)[/tex] cm[tex]\(^2\)[/tex]
- [tex]\( 6.25 \)[/tex] cm[tex]\(^2\)[/tex]
- [tex]\( 6.25 \sqrt{3} \)[/tex] cm[tex]\(^2\)[/tex]
- [tex]\( 12.5 \)[/tex] cm[tex]\(^2\)[/tex]

Upon close inspection, none of the options exactly match our numerical result [tex]\(10.83 \ \text{cm}^2\)[/tex].

Therefore, based on the exact method we used and the final value calculated, it appears that there may be a mistake or an oversight in the provided answer choices. Ideally, the proper selection should have matched the computed result.

Conclusively, based on our calculation:
[tex]\[ \boxed{10.83 \ \text{cm}^2} \][/tex]