Which equation is the inverse of [tex]\( 5y + 4 = (x + 3)^2 + \frac{1}{2} \)[/tex] ?

A. [tex]\( y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{11}{10} \)[/tex]

B. [tex]\( y = 3 \pm \sqrt{5x + \frac{7}{2}} \)[/tex]

C. [tex]\( -5y - 4 = -(x + 3)^2 - \frac{1}{2} \)[/tex]

D. [tex]\( y = -3 \pm \sqrt{5x + \frac{7}{2}} \)[/tex]



Answer :

To determine the inverse of the equation [tex]\(5y + 4 = (x + 3)^2 + \frac{1}{2}\)[/tex], we need to isolate [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].

### Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 5y + 4 = (x + 3)^2 + \frac{1}{2} \][/tex]

2. Isolate [tex]\(5y\)[/tex]:
[tex]\[ 5y = (x + 3)^2 + \frac{1}{2} - 4 \][/tex]

3. Simplify the expression on the right-hand side:
[tex]\[ 5y = (x + 3)^2 + \frac{1}{2} - 4 \][/tex]
[tex]\[ 5y = (x + 3)^2 + \frac{1}{2} - \frac{8}{2} \][/tex]
[tex]\[ 5y = (x + 3)^2 - \frac{7}{2} \][/tex]

4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{1}{5} \left((x + 3)^2 - \frac{7}{2}\right) \][/tex]
[tex]\[ y = \frac{1}{5} (x + 3)^2 - \frac{7}{10} \][/tex]

5. Expand [tex]\(y\)[/tex] (if needed):
We can expand [tex]\((x + 3)^2 = x^2 + 6x + 9\)[/tex]:
[tex]\[ y = \frac{1}{5} (x^2 + 6x + 9) - \frac{7}{10} \][/tex]
[tex]\[ y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{9}{5} - \frac{7}{10} \][/tex]
[tex]\[ y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{18}{10} - \frac{7}{10} \][/tex]
[tex]\[ y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{11}{10} \][/tex]

Hence, the equation for the inverse function is:

[tex]\[ y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{11}{10} \][/tex]

Thus, the correct answer from the given options is:

[tex]\[ y = \frac{1}{5} x^2 + \frac{6}{5} x + \frac{11}{10} \][/tex]