What is the inverse of [tex]\( f(x) = \frac{1}{3}x + 2 \)[/tex] ?

A. [tex]\( h(x) = \frac{1}{3}x + 2 \)[/tex]

B. [tex]\( h(x) = \frac{1}{3}x - 2 \)[/tex]

C. [tex]\( h(x) = 3x - 2 \)[/tex]

D. [tex]\( h(x) = 3x - 6 \)[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{1}{3}x + 2 \)[/tex], we need to swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] and then solve for [tex]\( y \)[/tex].

1. Start with the equation:
[tex]\[ y = f(x) = \frac{1}{3}x + 2 \][/tex]

2. To find the inverse, interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{1}{3}y + 2 \][/tex]

3. Solve for [tex]\( y \)[/tex]. First, isolate [tex]\( y \)[/tex]:
[tex]\[ x - 2 = \frac{1}{3}y \][/tex]

4. Multiply both sides by 3 to solve for [tex]\( y \)[/tex]:
[tex]\[ 3(x - 2) = y \][/tex]

5. Simplify the expression:
[tex]\[ y = 3x - 6 \][/tex]

So, the inverse function [tex]\( h(x) \)[/tex] is [tex]\( 3x - 6 \)[/tex].

Thus, the correct answer from the given options is:
[tex]\[ h(x) = 3x - 6 \][/tex]