What is the period of [tex][tex]$y=\sin (3x)$[/tex][/tex]?

A. [tex][tex]$\frac{\pi}{3}$[/tex][/tex]
B. [tex][tex]$\frac{2\pi}{3}$[/tex][/tex]
C. [tex][tex]$3\pi$[/tex][/tex]



Answer :

To determine the period of the function [tex]\( y = \sin(3x) \)[/tex], we need to use the property related to the period of sinusoidal functions.

The general form of a sine function is [tex]\( y = \sin(bx) \)[/tex], where [tex]\( b \)[/tex] is a constant that affects the period of the function. The period [tex]\( T \)[/tex] of a sine function [tex]\( y = \sin(bx) \)[/tex] is given by the formula:

[tex]\[ T = \frac{2\pi}{b} \][/tex]

In the given function [tex]\( y = \sin(3x) \)[/tex], the constant [tex]\( b \)[/tex] is 3. Applying the formula to find the period:

[tex]\[ T = \frac{2\pi}{3} \][/tex]

Therefore, the period of the function [tex]\( y = \sin(3x) \)[/tex] is [tex]\( \frac{2\pi}{3} \)[/tex].

So the correct answer is:

[tex]\[ \frac{2\pi}{3} \][/tex]