The pH of lemon juice at [tex]298 \, K[/tex] is found to be 2.32. What is the concentration of [tex]H_3O^+[/tex] ions in the solution?

A. [tex]1.05 \times 10^{-3} \, M[/tex]
B. [tex]4.79 \times 10^{-3} \, M[/tex]
C. [tex]2.08 \times 10^2 \, M[/tex]
D. [tex]9.55 \times 10^2 \, M[/tex]



Answer :

To determine the concentration of hydronium ions ([tex]\(\left[ H_3O^+ \right]\)[/tex]) in lemon juice with a given pH of 2.32, we can use the formula:

[tex]\[ \left[ H_3O^+ \right] = 10^{-\text{pH}} \][/tex]

Given:
[tex]\[ \text{pH} = 2.32 \][/tex]

We substitute the pH value into the formula to find the concentration:

[tex]\[ \left[ H_3O^+ \right] = 10^{-2.32} \][/tex]

Evaluating [tex]\(10^{-2.32}\)[/tex]:

[tex]\[ 10^{-2.32} \approx 0.004786 \][/tex]

Therefore, the concentration of [tex]\(H_3O^+\)[/tex] ions in the lemon juice is approximately [tex]\(0.004786\)[/tex] M.

Among the given options:

- [tex]\(1.05 \times 10^{-3} M\)[/tex]
- [tex]\(4.79 \times 10^{-3} M\)[/tex]
- [tex]\(2.08 \times 10^2 M\)[/tex]
- [tex]\(9.55 \times 10^2 M\)[/tex]

The concentration [tex]\(0.004786\)[/tex] M matches most closely with [tex]\( 4.79 \times 10^{-3} M \)[/tex].

Thus, the correct answer is:

[tex]\[ 4.79 \times 10^{-3} M \][/tex]