What is the product?

[tex]\[ \left(y^2 + 3y + 7\right) \left(8y^2 + y + 1\right) \][/tex]

A. [tex]\(8y^4 + 24y^3 + 60y^2 + 10y + 7\)[/tex]

B. [tex]\(8y^4 + 25y^3 + 4y^2 + 10y + 7\)[/tex]

C. [tex]\(8y^4 + 25y^3 + 60y^2 + 7y + 7\)[/tex]

D. [tex]\(8y^4 + 25y^3 + 60y^2 + 10y + 7\)[/tex]



Answer :

To find the product [tex]\((y^2 + 3y + 7)(8y^2 + y + 1)\)[/tex], we need to multiply the terms in each polynomial step-by-step and then combine like terms. Here's the detailed breakdown:

1. First, distribute each term of the first polynomial by each term of the second polynomial.

[tex]\[ (y^2 + 3y + 7)(8y^2 + y + 1) \][/tex]

2. Distribute [tex]\(y^2\)[/tex] across the second polynomial:

[tex]\[ y^2 \cdot 8y^2 + y^2 \cdot y + y^2 \cdot 1 = 8y^4 + y^3 + y^2 \][/tex]

3. Distribute [tex]\(3y\)[/tex] across the second polynomial:

[tex]\[ 3y \cdot 8y^2 + 3y \cdot y + 3y \cdot 1 = 24y^3 + 3y^2 + 3y \][/tex]

4. Distribute [tex]\(7\)[/tex] across the second polynomial:

[tex]\[ 7 \cdot 8y^2 + 7 \cdot y + 7 \cdot 1 = 56y^2 + 7y + 7 \][/tex]

5. Now, combine all the products:

[tex]\[ 8y^4 + y^3 + y^2 + 24y^3 + 3y^2 + 3y + 56y^2 + 7y + 7 \][/tex]

6. Combine like terms:

[tex]\[ 8y^4 + (1y^3 + 24y^3) + (1y^2 + 3y^2 + 56y^2) + (3y + 7y) + 7 \][/tex]

[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

So, the product of the polynomials [tex]\((y^2 + 3y + 7)(8y^2 + y + 1)\)[/tex] is:

[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

The correct answer is:

[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]