The following sector has a radius of 10 inches and a central angle of [tex]$30^{\circ}$[/tex]. What is the arc length, in inches?

A. [tex]$\frac{5 \pi}{3}$[/tex]
B. [tex]$\frac{7 \pi}{4}$[/tex]
C. [tex]$\frac{10 \pi}{7}$[/tex]
D. [tex]$\frac{7 \pi}{6}$[/tex]



Answer :

To determine the length of the arc of a sector given its radius and central angle, follow these steps:

1. Convert the central angle from degrees to radians:
- The central angle is given as \( 30^\circ \).
- The formula to convert degrees to radians is:

[tex]\[ \text{Radians} = \left( \frac{\text{Degrees} \times \pi}{180} \right) \][/tex]
Plugging in the value:

[tex]\[ \text{Central angle in radians} = \left( \frac{30 \times \pi}{180} \right) = \frac{\pi}{6} \approx 0.524 \][/tex]

2. Calculate the arc length:
- The formula for the arc length \( s \) of a sector is:

[tex]\[ s = r \theta \][/tex]

where \( r \) is the radius and \( \theta \) is the central angle in radians.

Plugging in the values:

[tex]\[ s = 10 \times \frac{\pi}{6} = \frac{10 \pi}{6} = \frac{5 \pi}{3} \approx 5.236 \][/tex]

Given this calculation, the length of the arc of the sector is \( \frac{5 \pi}{3} \) inches.

Hence, the correct choice is:

[tex]\[ (1) \frac{5 \pi}{3} \][/tex]