Given the function [tex]g(x) = -3x + 4[/tex], compare and contrast [tex]g(-2)[/tex] and [tex]g(4)[/tex]. Choose the statement that is true concerning these two values.

A. The value of [tex]g(-2)[/tex] is smaller than the value of [tex]g(4)[/tex].
B. The value of [tex]g(-2)[/tex] is the same as the value of [tex]g(4)[/tex].
C. The values of [tex]g(-2)[/tex] and [tex]g(4)[/tex] cannot be compared.
D. The value of [tex]g(-2)[/tex] is larger than the value of [tex]g(4)[/tex].



Answer :

To answer this question, we start by evaluating the function [tex]\( g(x) = -3x + 4 \)[/tex] at two different points: [tex]\( x = -2 \)[/tex] and [tex]\( x = 4 \)[/tex].

1. Let's calculate [tex]\( g(-2) \)[/tex]:
[tex]\[ g(-2) = -3(-2) + 4 \][/tex]
Simplify the expression:
[tex]\[ g(-2) = 6 + 4 = 10 \][/tex]
Hence, [tex]\( g(-2) = 10 \)[/tex].

2. Next, let's calculate [tex]\( g(4) \)[/tex]:
[tex]\[ g(4) = -3(4) + 4 \][/tex]
Simplify the expression:
[tex]\[ g(4) = -12 + 4 = -8 \][/tex]
Hence, [tex]\( g(4) = -8 \)[/tex].

We now have the values:
[tex]\[ g(-2) = 10 \quad \text{and} \quad g(4) = -8 \][/tex]

3. To compare these values:
- [tex]\( g(-2) = 10 \)[/tex]
- [tex]\( g(4) = -8 \)[/tex]

Clearly, [tex]\( 10 \)[/tex] is larger than [tex]\( -8 \)[/tex].

Therefore, the correct statement is:
- The value of [tex]\( g(-2) \)[/tex] is larger than the value of [tex]\( g(4) \)[/tex].