Which expression is the simplest form of [tex]\frac{5(x-3)-3(2x+4)}{9}[/tex]?

A. [tex]\frac{11x-27}{9}[/tex]
B. [tex]\frac{-x-27}{9}[/tex]
C. [tex]\frac{-x-3}{9}[/tex]
D. [tex]-x-3[/tex]



Answer :

To find the simplest form of the expression [tex]\(\frac{5(x-3) - 3(2x+4)}{9}\)[/tex], let's follow a step-by-step approach to simplify the numerator first and then divide by 9.

1. Distribute the constants inside the parentheses:

[tex]\[ 5(x-3) - 3(2x+4) \][/tex]
Distribute 5 to both terms in [tex]\( (x-3) \)[/tex]:
[tex]\[ 5 \cdot x - 5 \cdot 3 = 5x - 15 \][/tex]
Distribute -3 to both terms in [tex]\( (2x+4) \)[/tex]:
[tex]\[ -3 \cdot 2x - 3 \cdot 4 = -6x - 12 \][/tex]

2. Combine the results from distribution:

[tex]\[ 5x - 15 - 6x - 12 \][/tex]

3. Combine the like terms:

Combine the [tex]\(x\)[/tex]-terms:
[tex]\[ 5x - 6x = -x \][/tex]
Combine the constant terms:
[tex]\[ -15 - 12 = -27 \][/tex]
So the simplified numerator is:
[tex]\[ -x - 27 \][/tex]

4. Express the entire fraction:

Now we can write the expression as:
[tex]\[ \frac{-x - 27}{9} \][/tex]

5. Compare with the provided options:

- A. [tex]\(\frac{11x - 27}{9}\)[/tex]
- B. [tex]\(\frac{-x - 27}{9}\)[/tex]
- C. [tex]\(\frac{-x - 3}{9}\)[/tex]
- D. [tex]\(-x - 3\)[/tex]

Clearly, the simplified form matches option B:
[tex]\[ \boxed{\frac{-x - 27}{9}} \][/tex]

So, the simplest form of the given expression is [tex]\(\frac{-x - 27}{9}\)[/tex] which matches option B.