What is the solution to this equation?

[tex]\[ 9x - 4(x - 2) = x + 20 \][/tex]

A. [tex]\( x = 3 \)[/tex]

B. [tex]\( x = -3 \)[/tex]

C. [tex]\( x = 7 \)[/tex]

D. [tex]\( x = -7 \)[/tex]



Answer :

Let's solve the given equation step by step:
[tex]\[ 9x - 4(x - 2) = x + 20 \][/tex]

First, distribute the [tex]\(-4\)[/tex] on the left-hand side:
[tex]\[ 9x - 4x + 8 = x + 20 \][/tex]
This simplifies to:
[tex]\[ 5x + 8 = x + 20 \][/tex]

Next, we want to isolate [tex]\(x\)[/tex] on one side of the equation. To do this, subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 5x - x + 8 = 20 \][/tex]
[tex]\[ 4x + 8 = 20 \][/tex]

Now, subtract [tex]\(8\)[/tex] from both sides:
[tex]\[ 4x + 8 - 8 = 20 - 8 \][/tex]
[tex]\[ 4x = 12 \][/tex]

Finally, divide both sides by [tex]\(4\)[/tex]:
[tex]\[ x = \frac{12}{4} \][/tex]
[tex]\[ x = 3 \][/tex]

So, the solution to the equation is [tex]\(x = 3\)[/tex]. Therefore, the correct answer is [tex]\( \boxed{A} \)[/tex].
The answer of this question is option B.x=-3