Calculate the perimeter of a triangle in [tex]$(cm)$[/tex] whose dimensions are [tex]$1 m 60 cm, 1 m 80 cm$[/tex], and [tex]$2 m$[/tex].

A. [tex]$460 cm$[/tex]
B. [tex]$540 cm$[/tex]
C. [tex]$576 cm$[/tex]
D. [tex]$660 cm$[/tex]



Answer :

To calculate the perimeter of a triangle, we need to sum the lengths of all three sides. The problem provides measurements in meters and centimeters, so let's first convert everything to centimeters:

1. The first side is [tex]\(1 \, \text{m}\)[/tex] [tex]\(60 \, \text{cm}\)[/tex]:
- [tex]\(1 \, \text{m} = 100 \, \text{cm}\)[/tex]
- Therefore, [tex]\(1 \, \text{m} \, 60 \, \text{cm}\)[/tex] is [tex]\(100 \, \text{cm} + 60 \, \text{cm} = 160 \, \text{cm}\)[/tex].

2. The second side is [tex]\(1 \, \text{m} \, 80 \, \text{cm}\)[/tex]:
- Similarly, [tex]\(1 \, \text{m} = 100 \, \text{cm}\)[/tex]
- Thus, [tex]\(1 \, \text{m} \, 80 \, \text{cm}\)[/tex] is [tex]\(100 \, \text{cm} + 80 \, \text{cm} = 180 \, \text{cm}\)[/tex].

3. The third side is [tex]\(2 \, \text{m}\)[/tex]:
- [tex]\(2 \, \text{m} = 2 \times 100 \, \text{cm} = 200 \, \text{cm}\)[/tex].

Now, to find the perimeter, we add up these three sides:
- Side 1: [tex]\(160 \, \text{cm}\)[/tex]
- Side 2: [tex]\(180 \, \text{cm}\)[/tex]
- Side 3: [tex]\(200 \, \text{cm}\)[/tex]

Thus, the perimeter is:

[tex]\[ 160 \, \text{cm} + 180 \, \text{cm} + 200 \, \text{cm} = 540 \, \text{cm} \][/tex]

The correct answer is:

[tex]\[ \boxed{540 \, \text{cm}} \][/tex]