Solve [tex]$5x + 10y = 15$[/tex] for [tex]$x$[/tex].

A. [tex]$x = -10y + 3$[/tex]
B. [tex][tex]$x = -2y + 3$[/tex][/tex]
C. [tex]$x = 10y + 15$[/tex]
D. [tex]$x = -2y + 15$[/tex]



Answer :

To solve the given equation [tex]\( 5x + 10y = 15 \)[/tex] for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] on one side of the equation. Let's go through the steps to do this carefully:

1. Start with the given equation:
[tex]\[ 5x + 10y = 15 \][/tex]

2. Subtract [tex]\( 10y \)[/tex] from both sides to begin isolating [tex]\( x \)[/tex]:
[tex]\[ 5x = 15 - 10y \][/tex]

3. Divide every term in the equation by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{15 - 10y}{5} \][/tex]

4. Simplify the right side of the equation:
[tex]\[ x = \frac{15}{5} - \frac{10y}{5} \][/tex]

This simplifies further to:
[tex]\[ x = 3 - 2y \][/tex]

5. Rewriting it to match the given options:
[tex]\[ x = -2y + 3 \][/tex]

Thus, the solution is:
[tex]\[ \boxed{B: x = -2y + 3} \][/tex]