To find the value of [tex]\( 6ab \)[/tex] given that [tex]\( a = 3 \)[/tex] and [tex]\( b = 2 \)[/tex], we can follow these steps:
1. Identify the values of the variables:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = 2 \)[/tex]
2. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression [tex]\( 6ab \)[/tex]:
- [tex]\( 6ab = 6 \times a \times b \)[/tex]
3. Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with their given values:
- [tex]\( 6 \times 3 \times 2 \)[/tex]
4. First perform the multiplication of [tex]\( 3 \)[/tex] and [tex]\( 2 \)[/tex]:
- [tex]\( 3 \times 2 = 6 \)[/tex]
5. Now multiply this result by [tex]\( 6 \)[/tex]:
- [tex]\( 6 \times 6 = 36 \)[/tex]
So, the value of [tex]\( 6ab \)[/tex] when [tex]\( a = 3 \)[/tex] and [tex]\( b = 2 \)[/tex] is [tex]\( 36 \)[/tex].