Simplify the expression. Write the answer in scientific notation.

[tex]\[
\left(4 \times 10^6\right) \cdot 10^{-3}
\][/tex]

A. [tex]\(4 \times 10^{-18}\)[/tex]

B. [tex]\(4 \times 10^3\)[/tex]

C. 4,000

D. [tex]\(4 \times 10^9\)[/tex]



Answer :

To simplify the expression [tex]\( \left(4 \times 10^6\right) \cdot 10^{-3} \)[/tex], follow these steps:

1. Understand the problem: We need to multiply the number [tex]\( 4 \times 10^6 \)[/tex] by [tex]\( 10^{-3} \)[/tex].

2. Multiply the coefficients: The base numbers (coefficients) can be multiplied directly. Here, the coefficient is 4.

3. Add the exponents: When multiplying numbers in scientific notation, add the exponents of the base 10 terms. Specifically, [tex]\(10^6\)[/tex] and [tex]\(10^{-3}\)[/tex]:
[tex]\[ 10^6 \times 10^{-3} = 10^{6 + (-3)} = 10^{3} \][/tex]

4. Combine the results: Now combine the coefficient with the simplified base 10 term:
[tex]\[ 4 \times 10^6 \cdot 10^{-3} = 4 \times 10^3 \][/tex]

5. Express in scientific notation: The result can be directly written in scientific notation as:
[tex]\[ 4.0 \times 10^3 \][/tex]

6. Verify and match the answer with provided options:
- A. [tex]\(4 \times 10^{-18}\)[/tex]
- B. [tex]\(4 \times 10^3\)[/tex]
- C. 4,000
- D. [tex]\(4 \times 10^9\)[/tex]

Since [tex]\(4.0 \times 10^3\)[/tex] is the same as [tex]\(4 \times 10^3\)[/tex], the correct option is:
[tex]\[ \boxed{B} \][/tex]

Option B is the correct answer. Thus, [tex]\( \left(4 \times 10^6\right) \cdot 10^{-3} \)[/tex] simplifies to [tex]\( 4 \times 10^3 \)[/tex].