What value of [tex]$x$[/tex] makes this proportion true?

[tex]\[ \frac{3}{x} = \frac{15}{40} \][/tex]

A. 28
B. 5
C. 105
D. 8



Answer :

To find the value of [tex]\( x \)[/tex] that makes the proportion [tex]\( \frac{3}{x} = \frac{15}{40} \)[/tex] true, follow these steps:

1. Express the Equation:
[tex]\[ \frac{3}{x} = \frac{15}{40} \][/tex]

2. Cross-Multiply:
Cross-multiplication involves multiplying the numerator on one side by the denominator on the other side:
[tex]\[ 3 \cdot 40 = 15 \cdot x \][/tex]

3. Simplify the Equation:
Simplify the multiplication on each side:
[tex]\[ 120 = 15x \][/tex]

4. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], divide both sides of the equation by 15:
[tex]\[ x = \frac{120}{15} \][/tex]

5. Perform the Division:
Calculate the division:
[tex]\[ x = 8 \][/tex]

So, the value of [tex]\( x \)[/tex] that makes the given proportion true is [tex]\( \boxed{8} \)[/tex].